Caracterización espacio-temporal de las sequías meteorológicas en Santa Cruz en el contexto de cambio climático

Autores/as

  • Leandro Almonacid Municipalidad de Río Gallegos, Instituto Nacional de Tecnología Agropecuaria, Argentina
  • Natalia Pessacg Instituto Patagónico para el Estudio de los Ecosistemas Continentales, Argentina
  • Boris Gastón Diaz Instituto Nacional de Tecnología Agropecuaria, Argentina
  • Pablo Luis Peri Instituto Nacional de Tecnología Agropecuaria, Universidad Nacional de la Patagonia Austral, Argentina

DOI:

https://doi.org/10.24215/1850468Xe035

Palabras clave:

precipitación, sequías, cambio climático, Santa Cruz

Resumen

Las sequías son un fenómeno de escala regional que afecta la seguridad alimentaria, la provisión de agua y energía, cuya severidad, duración y frecuencia se espera aumenten en un contexto de cambio climático. En el presente trabajo se estudió la tendencia en la precipitación anual y estacional en la provincia de Santa Cruz; la ocurrencia de sequías meteorológicas y las proyecciones climáticas hasta el año 2100. Para el cálculo de las sequías se utilizó el Índice Estandarizado de Precipitación (SPI) en una escala de 6 meses (SPI6) para un periodo pasado reciente (1961-2020) y dos periodos futuros (2041-2060 y (2081-2100). Se pudo observar que más de un 70% de la superficie de la provincia presentó una tendencia negativa en la precipitación anual para el periodo 1961-2020. Este efecto fue más acentuado al estudiarlo de forma estacional, donde se observó que durante el otoño e invierno se presentaron las tendencias más negativas, ubicadas hacia la región noroeste de la provincia. La frecuencia de eventos totales de sequía (ES) para el pasado reciente se presentaron entre 2,6 a 4,5 eventos/década, no coincidiendo las zonas más afectadas por sequías con las regiones de tendencias negativas en la precipitación. Con respecto al cambio climático, al analizar los escenarios de mayor emisión de gases de efecto invernadero (GEI), (SSP2-4.5 y SSP5-8.5) para el periodo 2081-2100, se pudo observar que una mayor superficie del territorio provincial será afectada por una disminución en la precipitación anual de hasta un 30% para SSP5-8.5. Analizando las sequías proyectadas, se determinó que la región oeste de la provincia presentará una menor cantidad de eventos de sequía, pero de mayor duración y severidad que en el periodo de referencia acentuándose en el escenario SSP5-8.5.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Almazroui M., Ashfaq M., Islam N. M., Rashid I. U., Kamil S., Abid M. A., O’Brien E., Ismail M., Reboita M. S., Sörensson A. A., Arias P. A., Alves L. M., Tippett M. K., Saeed S., Haarsma R., Doblas-Reyes F. J., Saeed F., Kucharsky F., Nadeem I., Silva-Vidal Y., Rivera J. A., Ehsan M. A., Martínez-Castro D., Muñoz A., Ali M. A., Coppola E., Bamba Sylla M., 2021: Assessment of CMIP6 performance and projected temperature and precipitation changes over South America. Earth Systems and Environment, 5: 155-183. https://doi.org/10.1007/s41748-021-00233-6

Almonacid L., Pessacg N., Díaz B., Bonfili O., Peri P.L., 2021: Nueva base de datos reticulada de precipitación para la provincia de Santa Cruz, Argentina. Meteorológica, Vol. 46 N° 2 (2021) 27 – 54. https://doi.org/10.24215/1850468Xe010

Almonacid L., Pessacg N., Díaz B., Bonfili O., Peri P.L., 2022: Nueva base de datos reticulada de temperatura para la provincia de Santa Cruz, Argentina. Meteorológica 47:

-19. https://doi.org/10.24215/1850468Xe010

Almonacid L., Pessacg N., Díaz B., Peri P.L., 2023: Climate regionalization of Santa Cruz province, Argentina. Atmósfera 37, 245-258. https://doi.org/10.20937/atm.53166

Balmaceda-Huarte R., Olmo M.E., Bettolli M.L., Poggi M.M., 2021: Evaluation of multiple reanalyses in reproducing the spatio-temporal variability of temperature and precipitation indices over southern South America. International Journal of Climatology, 41:5572-5595. https://doi.org/10.1002/joc.7142

Bianchi E., Villalba R., Viale M., Couvreux F., Marticorena R., 2016: New precipitation and temperature grids for northern Patagonia: Advances in relation to global climate grids. Journal of Meteorological Research, 30: 38 – 52. https://doi.org/10.1007/s13351-015-5058-y

Blanco P.S., Doyle M.E., 2024: Temporal variability of aridity in Argentina during the period 1961-2020. Atmospheric Research 310 (2024): 107613. https://doi.org/10.1016/j.atmosres.2024.107613

Camilloni I., Blázquez J., Díaz L., Gulizia C., Müller G., Lovino M., Pessacg N., Rivera J., Saurral R., 2023: Estudio sobre cambios observados y escenarios climáticos futuros para Argentina para diferentes horizontes temporales y umbrales de calentamiento global. FUNDACEN. Proyecto ARG 19003: Plan Nacional de Adaptación al Cambio Climático. 161 pp.

Chiev F. H. S., Whetton P. H., McMahon T. A, Pittock A. B., 1995: Simulation of the impacts of climate change on runoff and soil moisture in Australian catchments. Journal of Hidrology 167 (1995) 121 - 147. https://doi.org/10.1016/0022-1694(94)02649-V

Cook B.I., Mankin J.S., Marvel K., Williams P., Smerdon J.E., Anchukaitis K.J., 2020: Twenty-first century drought projections in the CMIP6 forcing scenarios. Earth’s Future, Daramola M. T., Xu M., 2021: Recent changes in global dryland temperature and precipitation. International Journal of Climatology; V 42:2; pp 1267- 1282. https://doi.org/10.1029/2019EF001461

Del Valle H. F., Elissalde N. O., Gagliardini D. A., Milovich J., 1998: Status of desertification in the Patagonian region: Assessment and mapping from satellite imagery. Arid Soil Research and Rehabilitation, 12:2, 95-121. https://doi.org/10.1080/15324989809381502

Dong Z., Liu H., Baiyinbaoligao, Hu H., Ali Khan M.Y., Wen J., Chen L., Tian F., 2022: Future projection of seasonal drought characteristics using CMIP6 in the Lancang-Mekong river basin. Journal of Hydrology 610, 127815. https://doi.org/10.1016/j.jhydrol.2022.127815

Eyring V., Bony S., Meehl G.A., Senior C.A., Stevens B., Stouffer R.J., Taylor K.E., 2016: Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9, 1937-1958. https://doi.org/10.5194/gmd-9-1937-2016

Farahmand A., AghaKouchak A., 2015: A generalized framework for deriving nonparametric standarized drought indicators. Advances in Water Resources, 73: 140-145. https://doi.org/10.1016/j.advwatres.2014.11.012

Fung K.F., Huang Y.F., Koo C.H., 2020: Assessing drought conditions through temporal pattern, spatial characteristic and operational accuracy indicated by SPI and SPEI: case analysis for Peninsular Malaysia. Natural Hazard (2020) 103:2071-2101. https://doi.org/10.1007/s11069-020-04072-y

Garreaud R. D., Falvey M., 2009: The coastal winds off western subtropical South America in future climate scenarios. International Journal of Climatology, vol. 29, no. 4, pp. 543–554. https://doi.org/10.1002/joc.1716

Giorgi F., Raffaele F., Coppola E., 2019: The response of precipitation characteristics to global warming from climate projections. Earth System Dynamics, 10, 73-89. https://doi.org/10.5194/esd-10-73-2019

Harris I., Osborn T.J., Lister D., 2020: Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Scientific Data, 7:109 18pp.

Hayes M., Svoboda M., Wall N., Widhalm M., 2011: The Lincoln Declaration on Drought Indices: universal meteorological drought index recommended. Bulletin of the American Meteorological Society, 92:485–488. https://doi.org/10.1175/2010BAMS3103.1

Intergovernmental Panel on Climate Change (IPCC)., 2023: Technical Summary. In Climate Change 2021 – The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 35-144). Cambridge: Cambridge University Press. https://doi.org/10.1017/9781009157896.002

Li X., Sha J., Liang-Wang Z., 2019: Comparison of drought indices in the analysis of spatial and temporal changes of climatic droughts events in a basin. Environmental Science and Pollution Research (2019) 26:10695-10707. https://doi.org/10.1007/s11356-019-04529-z

Li W., Li X., Zhao Y., Zheng S., Bai Y., 2018: Ecosystem structure, functioning and stability under climate change and grazing in grasslands: current status and future prospects. Current opinion in Environmental Sustainability, 33:124-135. https://doi.org/10.1016/j.cosust.2018.05.008

Liu C., Yang C., Yang Q., Wang J., 2021: Spatiotemporal drought analysis by the standarized precipitation index (SPI) and standarized precipitation evapotranspiration index (SPEI) in Sichuan Province, China. Scientific Reports, 11:1280. https://doi.org/10.1038/s41598-020-80527-3

Liu Z., Wang Y., Shao M., Jia X., Li X., 2016: Spatiotemporal analysis of multiscalar drought characteristics across the Loess Plateau of China. Journal of Hydrology. 534, 281–299. https://doi.org/10.1016/j.jhydrol.2016.01.003

Masiokas M.H., Cara L., Villalba R., Pitte P., Luckman B.H., Toum E., Christie D.A., Le Quesne C., Mauget S., 2019: Streamflow variations across the Andes (18_-55_S) during the instrumental era. Scientific Reports, Nature Research, 9:17879. https://doi.org/10.1038/s41598-019-53981-x

McKee T.B., Doeskin N.J., Kleis J., 1993: The relationship of drought frequency and duration to time scales. In: Proceedings of the 8th Conference on Applied Climatology. American Meteorological Society, Boston, MA, pp. 179-184.

Mishra A.K., Singh V.P., 2011: Drought modelling – A review. Journal of Hydrology 403: 157 – 175. https://doi.org/10.1016/j.jhydrol.2011.03.049

Nuñez M., Solman S. A., Cabré M. F., 2009: Regional climate change experiments over southern South America. II: climate change scenarios in the late twenty-first century. Climate Dynamics, vol. 32, no. 7-8, pp. 1081–1095, 2009. https://doi.org/10.1007/s00382-008-0449-8

O’Neill CO., Tebaldi C., van Vuuren DP., Eyring V., Friedlingstein P., Hurrt G., Knutti R., Kriegler E., Lamarque JF., Lowe J., Meehl GA., Moss R., Riahi K., Sanderson BM., 2016: The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geoscientific Model Development, 9: 3461-3482. https://doi.org/10.5194/gmd-9-3461-2016

Palmer W.C., 1965: Meteorological drought. U.S Weather Bureau Research Paper, 45, 58pp.

Paruelo J.M., Beltrán A., Jobbágy E., Sala O.E., Golluscio R.A., 1998: The Climate of Patagonia: general patterns and controls on biotic processes. Ecología Austral, 8:85-101. https://ojs.ecologiaaustral.com.ar/index.php/Ecologia_Austral/article/view/1611

Peri P. L., Lasagno R. G., Chartier M., Roig F., Rosas Y. M., Martínez Pastur G., 2021. Soil erosion rates and nutrient loss in rangelands of southern Patagonia. Imperiled: The Encyclopedia of Conservation, 2022, pp. 102-110. https://doi.org/10.1016/B978-0-12-821139-7.00183-5

Pessacg N., Liberoff A., Salvadores F., Rimoldi F., Brandizi L., Alonso Roldán V., Mac Donell L., Ambrosio M., Raguileo D., Malnero H., Rius P., Diaz L., 2021: Emergencia hídrica 2021-2022: Situación socio-ambiental de las cuencas de los ríos Chubut y Senguer. Informe técnico. Grupo técnico del Comité de Cuenca del Rio Chubut. Disponible en http://www.repositorio.cenpat-conicet.gob.ar/123456789/1485

Pessacg N., Blázquez J., Lancelotti J., Solman S., 2022: Climate changes in coastal areas of Patagonia: Observed trends and future projections. En: Helbling EW., Narvarte MA., Gonzalez RA., Villafañe VE. (eds) Global Change in Atlantic Coastal Patagonian Ecosystems. Natural and Social Sciences of Patagonia, pp 13-42. https://doi.org/10.1007/978-3-030-86676-1_2

Quiring S.M., 2009: Monitoring drought: an evaluation of meteorological drought indices. Geography Compass 3 (1), 64–88. https://doi.org/10.1111/j.1749-8198.2008.00207.x

Qian S., Wang L.Y., Gong X.F., 2012: Climate change and its effects on grassland productivity and carrying capacity of livestock in the main grasslands of China. Rangeland Journal 2012, 34:341-347. https://doi.org/10.1071/RJ11095

Rivera J.A., Penalba O.C., 2014: Trends and spatial patterns of drought affected area in southern America. Climate, 2:264-278. https://doi.org/10.3390/cli2040264

Rivera J. A., Araneo D. C., Penalba O. C., Villalba R., 2018: Regional aspects of streamflow droughts in the Andean rivers of Patagonia, Argentina. Links with large-scale climatic oscillations. Hydrology Research, 49:1, 134-149. https://doi.org/10.2166/nh.2017.207

Rossato L., Marengo J.A., De Angelis C.F., Marinho Pires L.B., Mendiondo EM., 2017: Impact of soil moisture over Palmer Drought Severity Index and its future projections in Brazil. Revista Brasileira de Recursos hídricos, v.22, e36. https://doi.org/10.1590/2318-0331.0117160045

Spinoni J., Vogt V., Naumann G., Barbosa P., Dosio A., 2018: Will drought events become more frequent and severe in Europe? International Journal of Climatology 38:1718-1736. http://dx.doi.org/10.1002/joc.5291

Spinoni J., Barbosa P., De Jager A., McCormick N., Naumann G., Vogt J.V., Magni D., Masante D., Mazzeschi M., 2019: A new global database of meteorological drought events from 1951 to 2016. Journal of Hydrology: Regional Studies 22, 24pp. https://doi.org/10.1016/j.ejrh.2019.100593

Szép I.J., Mika J., Dunkel Z., 2005: Palmer drought severity index as soil moisture indicator: physical interpretation, statistical behavior and relation to global climate. Physics and Chemistry of the Earth 30:231-243. https://doi.org/10.1016/j.pce.2004.08.039

Trenberth K. E., 1983: What are seasons? Bulletin of American Meteorological Society 64(11), 1276-1282. https://doi.org/10.1175/1520-0477(1983)064<1276:WATS>2.0.CO;2

Vera C., Skanski M., González M., 2023: Características de las sequías en el sur deSudamérica. SISSA-ART-001-2023, 26pp.

Vicente-Serrano S.M., Begueria S., Lopez-Moreno J.I., 2010: A multiscalar drought index sensitive to global warming: The Standarized Precipitation Evapotranspiration Index. Journal of Climate 23(7):1696-1718. https://doi.org/10.1175/2009JCLI2909.1

World Meteorological Organization (WMO) y Global Water Partnership (GWP)., 2016: Handbook of Drought Indicators and Indices (Svoboda M. y Fuchs B.A.). Integrated Drought Management Programme (IDMP), Integrated Drought Management Tools and Guidelines Series 2. Geneva. ISBN 978-92-63-11173-9

Xu F., Bento V. A., Qu Y., Wang Q., 2023: Projections of global drought and their climate drivers using CMIP6 global climate models. Water, 15, 2272, 18 pp. https://doi.org/10.3390/w15122272

Yadav R., Tripathi SK., Pranuthi G., Dubey K., 2014: Trend analysis by Mann-Kendall test for precipitation and temperature for thirteen districts of Uttarakhand. Journal of Agrometeorology 16 (2): 164-171. https://doi.org/10.54386/jam.v16i2.1507

Yuan W., Zhou G., 2004: Comparison between standardized precipitation index and Z-index in China. Journal of Plant Ecology, 28(4): 523–529. https://doi.org/10.17521/cjpe.2004.0071

Zargar A., Sadiq R., Naser B., Khan F.I., 2011: A review of drought indices. Environmental Reviews, 19:333–349. https://doi.org/10.1139/a11-013

Zhang Y., Wang P., Chen Y., Yang J., Wu D., Ma Y., Huo Z., Liu S., 2023: The optimal time-scale of Standarized Precipitation Index for early identifying summer maize drought in the Huang-Huai-Hai region, China. Journal of Hydrology: Regional Studies 46 (2023): 101350. https://doi.org/10.1016/j.ejrh.2023.101350

Zhao T., Dai A., 2022: CMIP6 model-projected hydroclimatic and drought changes and their causes in the twenty-first century. Journal of Climate 35.3 (2022): 897-921. https://doi.org/10.1175/JCLI-D-21-0442.1

Zhao X., Huang G., Li Y., Lin Q., Jin J., Lu C., Guo J., 2021. Projections of meteorologica drought based on CMIP6 multi-model ensemble: A case study of Henan Province, China. Journal of Contaminant Hydrology 243 (2021): 103887. https://doi.org/10.1016/j.jconhyd.2021.103887

Descargas

Publicado

22-11-2024

Número

Sección

Artículos