The Hadley circulation in southwestern South America: Metrics for its characterization
DOI:
https://doi.org/10.24215/1850468Xe029Keywords:
metrics, trends, ERA5, Hadley circulations, southwestern South AmericaAbstract
This paper provides an evaluation of the most commonly used metrics to characterize the downward branch of the Hadley cell and its trends over the last 40 years over the southwestern region of South America, through the analysis of seven hemispheric and three regional metrics obtained from meteorological variables associated to the ERA5 reanalysis for the period 1979-2021. Relationships between metrics were determined from Pearson's correlation coefficient and decadal trends from the Mann-Kendall test. The results found suggest statistically significant relationships between the hemispheric metric of reference mass flux current function at 500 hPa, the regional metric linked to the latitudinal position of the South Pacific Anticyclone, and the lower tropospheric metrics related to the maximum of sea level pressure and the latitude where the surface wind changes sign on both annual and seasonal scales. The metrics linked to eddy driven jet and regional precipitation minus evaporation capture the variability of the latitudinal position of the South Pacific Anticyclone, while the hemispheric lower troposphere metric precipitation minus evaporation captures the variability of the reference metric. Regarding the trends by decade of the annual averages of downward branch of the Hadley Cell over the last 40 years, statistically significant negative trends were found, indicating an expansion of the Hadley Cell over the last four decades. This could explain to some extent the decreasing precipitation trends in the southwestern region of South America.
Downloads
References
Adam, O., Scheiner, T., Harnik, N., 2014: Role of Changes in Mean Temperatures versus Temperature Gradients in the Recent Widening of the Hadley Circulation. Journal of Climate, vol 27, https://doi.org/10.1175/JCLI-D-14-00140.1
Adam, O., y colaboradores, 2018: The TropD software package (v1): Standardized methods for calculating tropical‐width diagnostics. Geoscientific Model Development, 11(10), 4339–4357. https://doi.org/10.5194/gmd-11-4339-2018
Barrett, B. S. y Hameed, S., 2017: Seasonal Variability in Precipitation in Central and Southern Chile: Modulation by the South Pacific High, J. Climate, 30, 55–69. https://doi.org/10.1175/JCLI-D-16-0019.1
Bengtsson, L.; Hagemann, S.; Hodges, K.I., 2004: Can climate trends be calculated from reanalysis data? J. Geophys. Res. Atmos. 109, ,https://doi.org/10.1029/2004JD004536
Birner, T., 2010: Recent widening of the tropical belt from global tropopause statis- tics: Sensitivities. J. Geophys. Res. Atmos., 115, D23109
Birner, T., Davis, S. M., y Seidel, D. J, 2014: The changing width of Earth's tropical belt, Phys. Today, 67, 38–44, https://doi.org/10.1063/PT.3.2620
Boisier, JP, y colaboradores, 2018: Anthropogenic drying in central-southern Chile evidenced by long-term observations and climate model simulations. Elem Sci Anth, 6: 74. https://doi.org/10.1525/elementa.328
Boisier, J. P., R. Rondanelli, R. D. Garreaud, and F. Muñoz, 2016: Anthropogenic and natural contributions to the Southeast Pacific precipitation decline and recent megadrought in central Chile, Geophys. Res. Lett., 43, https://doi.org/10.1002/2015GL067265
Byrne, N. J., y colaboradores, 2019: Subseasonal-to-seasonal predictability of the Southern Hemisphere Eddy-driven jet during austral spring and early summer. Journal ofGeophysical Research: Atmospheres,124, 6841–6855. https://doi.org/10.1029/2018JD030173
Byrne, N. J., y Shepherd, T. G., 2018: Seasonal persistence of circulation anomalies in the Southern Hemisphere stratosphere and its implications for the troposphere. Journal of Climate,31(9), 3467–3483. https://doi.org/10.1175/JCLI-D-17-0557.1
Caballero, R., 2007: Role of eddies in the interannual variability of Hadley cell strength. Geophys. Res. Lett., 34, L22705, https://doi.org/10.1029/2007GL030971
Cai, W., y colaboradores, 2012: Rainfall reductions over Southern Hemisphere semiarid regions: the role of subtropical dry zone expansion, Sci. Rep., 2, article number 702, https://doi.org/10.1038/srep00702
Choi, J.,y colaboradores, 2014: Further observational evidence of Hadley cell widening in the Southern Hemisphere, Geophys. Res. Lett., 41, 2590–2597, https://doi.org/10.1002/2014GL059426
Chen, S., y colaboradores, 2014: Regional changes in the annual mean Hadley circulation in recent decades. Journal of Geophysical Research: Atmospheres, 119, 7815–7832. https://doi.org/10.1002/2014JD021540
Davis, N., Birner, T., 2017: On the Discrepancies in Tropical Belt Expansion between Reanalyses and Climate Models and among Tropical Belt Width Metrics. Journal of Climate, 30(4), 1211–1231. https://doi.org/10.1175/JCLI-D-16-0371.1
Davis, S. M., and K. H. Rosenlof, 2012: A multidiagnostic intercomparison of tropical- width time series using reanalyses and satellite observations. J. Clim., 25, 1061– 1078. https://doi.org/10.1175/JCLI-D-11-00127.1
Díaz, L.B. y Vera, C.S., 2018: South American precipitation changes simulated by PMIP3/ CMIP5 models during the Little Ice Age and the recent global warming period. Int. Journal. Climatol. 2018; 1-13. https://doi.org/10.1002/joc.5449
Fahad, A. y colaboradores, 2020: How will southern hemisphere subtropical anticyclones respond to global warming? Mechanisms and seasonality in CMIP5 and CMIP6 model projections. Climate Dynamics, https://doi.org/10.1007/s00382-020-05290-7
Flores-Aqueveque, V y colaboradores, 2020: South Pacific Subtropical High from the late Holocene to the end of the 21st century: insights from climate proxies and general circulation models. Clim. Past, 16, 79–99, 2020, https://doi.org/10.5194/cp-16-79-2020
Freitas, A. C. y Ambrizzi, T., 2015: Recent Changes in the Annual Mean Regional Hadley Circulation and Their Impacts on South America. Advances in Meteorology. Article ID 780205. https://doi.org/10.1155/2015/780205
Garreaud R. D. y colaboradores, 2020: The Central Chile Mega Drought (2010–2018): A climate dynamics perspective, International Journal Climate, https://doi.org/10.1002/joc.6219
Garreaud, RD. y colaboradores, 2017: The 2010–2015 megadrought in central Chile: Impacts on regional hydroclimate and vegetation. Hydrol Earth Syst Sci 21(12): 6307–6327. https://doi.org/10.5194/hess-21-6307-2017
Garreaud, R, Lopez, P, Minvielle, M and Rojas, M., 2013: Large-Scale Control on the Patagonian Climate. J Climate 26(1): 215–230. https://doi.org/10.1175/JCLI-D-12-00001.1
Grise, K. M. y Davis, S. M., 2020: Hadley cell expansion in CMIP6 models, Atmos. Chem. Phys., 20, 5249–5268, https://doi.org/10.5194/acp-20-5249-2020
Grise, K. M., y colaboradores, 2019: Recent tropical expansion: Natural variability or forced response? J. Climate, 32, 1551–1571, https://doi.org/10.1175/JCLI-D-18-0444.1
Grise, K. M., y colaboradores, 2018: Regional and seasonal characteristics of the recent expansion of the tropics, J. Climate, 31, 6839–6856, https://doi.org/10.1175/JCLI-D-18-0060.1
Grise, K. M. y Polvani, L. M, 2016: Is climate sensitivity related to dy-namical sensitivity?, J. Geophys. Res.-Atmos., 121, 5159–5176, https://doi.org/10.1002/2015JD024687
IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, In press, https://doi.org/10.1017/9781009157896
Kang. S y Polvani. L, 2011: The Interannual Relationship between the Latitude of the Eddy-Driven Jet and the Edge of the Hadley Cell, Journal of Climate, vol 24, https://doi.org/10.1175/2010JCLI4077.1
Kendall, M. G., 1975: Rank Correlation Methods, Griffin, London.
Lucas, C., y colaboradores, 2014: The expanding tropics: a critical assessment of the observational an modeling studies. WIREs Clim Change 5: 89-112.
Lucas, C., y Nguyen, H., 2015: Regional characteristics of tropical expansion and the role of climate variability. Journal of Geophysical Research: Atmospheres, 120(14), 6809– 6824. https://doi.org/10.1002/2015JD023130
Mann, H. B., 1945: 'Nonparametric tests against trend', Econometrica 13, 245-259. https://doi.org/10.2307/1907187
Mantua, NJ, Hare, SR, Zhang, Y, Wallace, JM y Francis, RC, 1997: A Pacific Interdecadal Climate Oscillation with Impacts on Salmon Production. Bull Amer Meteor Soc 78(6): 1069–1079. DOI: https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2
Manney, G. L., y Hegglin, M. I., 2018: Seasonal and regional variations of long-term changes in upper-tropospheric jets from reanalyses. Journal of Climate, 31(1), 423–448. https://doi.org/10.1175/JCLI-D-17-0303.1
Montecinos, A and Aceituno, P., 2003: Seasonality of the ENSO-Related Rainfall Variability in Central Chile and Associated Circulation Anomalies. J Climate 16(2): 281–296. DOI: https://doi.org/10.1175/1520-0442(2003)016<0281:SOTERR>2.0.CO;2
Morales M.S., y colaboradores, 2020: Six hundred years of South American tree rings reveal an increase in severe hydroclimatic events since mid-20th century. PNAS, July 21, 2020, vol. 117, no. 29, 16817, https://doi.org/10.1073/pnas.2002411117
Nguyen H., Hendon, H.H., Lim, E.P. et al, 2018: Variability of the extent of the Hadley circulation in the southern hemisphere: a regional perspective. Clim Dyn, vol 50, 129-152, https://doi.org/10.1007/s00382-017-3592-2
Rivas, M. B., y A. Stoffelen, 2019: Characterizing ERA-Interim and ERA5 surface wind biases using ASCAT. Ocean Sci., 15, 831–852, https://doi.org/10.5194/os-15-831-2019
Reboita, M. y colaboradores, 2019: The South Atlantic Subtropical Anticyclone: Present and Future Climate. Front. Earth Sci. 7:8. https://doi.org/10.3389/feart.2019.00008
Rutllant, J y Fuenzalida, H., 1991: Synoptic aspects of the central chile rainfall variability associated with the southern oscillation. Int J Climatol 11(1): 63–76. https://doi.org/10.1002/joc.3370110105
Saurral, R., Camilloni, I., Barros, V., 2017: Low-frequency variability and trends in centennial precipitation stations in southern South America. Int. J. Climatol. 37: 1774–1793, https://doi.org/10.1002/joc.4810
Solomon, A., y colaboradores, 2016: Contrasting upper and lower atmospheric metrics of tropical expansion in the Southern Hemisphere, Geophys. Res.Lett.,43, 10,496–10,503, https://doi.org/10.1002/2016GL070917
Souza E. B, y Ambrizzi T, 2002: ENSO impacts on the SouthAmerican rainfall during 1980s: Hadley and Walker circulation. Atmósfera 15: 105–120. https://www.revistascca.unam.mx/atm/index.php/atm/article/view/8492
Schwendike, J.P. y colaboradores, 2014: Local Partitioning of the overturning circulation in the tropics and the connection to the Hadley and Walker circulations, J. Geophys. Res. Atmos., 119, 1322– 1339, https://doi.org/10.1002/2013JD020742
Staten y colaboradores, 2020: Tropical Widening From Global Variations to Regional Impacts, American Meteorological Society, https://doi.org/10.1175/BAMS-D-19-0047.1
Staten, P.W., Grise, K.M, Davis, S.M.,Karnauskas, K.B, Davis, N.A., 2019: Regional widening of tropical overturning: Forced change, natural variability, and recent trends, American Geophysical Union, https://doi.org/10.1029/2018JD030100
Staten, P.W. y colaboradores, 2018: Re- examining tropical expansion. Nature Climate Change, 8(9), 768-775. https://doi.org/10.1038/s41558-018-0246-2
Studholme, J., y S. Gulev, 2018: Concurrent Changes to Hadley Circulation and the Meridional Distribution of Tropical Cyclones. J. Climate. https://doi.org/10.1175/JCLI-D-17-0852.1
Varma, V., y colaboradores, 2012: Holocene evolution of the Southern Hemisphere westerly winds in transient simulations with global climate models. Climate of the Past 8: 391–402. https://doi.org/10.5194/cp-8-391-2012
Vera, C.S y colaboradores, 2019: Influence of Anthropogenically-Forced Global Warming and Natural Climate Variability in the Rainfall Changes Observed Over the South American Altiplano. Front. Environ. Sci., https://doi.org/10.3389/fenvs.2019.00087
Vera, CS y Díaz, L., 2015: Anthropogenic influence on summer precipitation trends over South America in CMIP5 models. International Journal of Climatology 35(10): 3172–3177. https://doi.org/10.1002/joc.4153
Villamayor y colaboradores, 2021: Causes of the long-term variability of southwestern South America precipitation in the IPSL- CM6A-LR model. Climate Dynamics, Springer Verlag, https ://doi.org/10.1007/s00382-021-05811-y
Vuille, M., y colaboradores, 2015: Impact of the global warming hiatus onAndean temperature,J. Geophys. Res.Atmos.,120, 3745–3757, https://doi.org/10.1002/2015JD023126
Vuille, M., y colaboradores, 2000: Interannual climate variability in the Central Andes and its relation to tropical Pacific and Atlantic forcing. Journal of Geophysical Research, Vol. 105, NO. D10, Pages 12, 460, May 27. https://doi.org/10.1002/2015JD023126
Waugh, D. W y colaboradores, 2018: Revisiting the relationship among metrics of tropical expansion. J. Clim. 31, 7565–7581. https://doi.org/10.1175/JCLI-D-18-0108.1
Xian, T., y colaboradores, 2021: Is Hadley Cell Expanding? Atmosphere, 12, 1699. https://doi.org/10.3390/atmos12121699
Zaplotnik y colaboradores, 2022: Recent Hadley Circulation Strengthening: A Trend or Multidecadal Variability?, Journal of Climate, https://doi.org/10.1175/JCLI-D-21-0204.1
Downloads
Published
Versions
- 2024-09-02 (2)
- 2024-06-28 (1)
Issue
Section
License
Copyright (c) 2024 Elizabeth Beatríz Naranjo Tamayo, Juan Antonio Rivera, Maximiliano Viale, Ricardo Villalba
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
According to these terms, the material may be shared (copied and redistributed in any medium or format) and adapted (remixed, transformed and created from the material another work), provided that a) the authorship and the original source of publication (journal and URL of the work) are cited, b) it is not used for commercial purposes and c) the same terms of the license are maintained.