Contribution of evapotranspiration components to soil-atmosphere interaction in South America

Authors

DOI:

https://doi.org/10.24215/1850468Xe033

Keywords:

evapotranspiration, land-atmosphere interaction hotspots, transpiration, inLand, LPJmL4

Abstract

Evapotranspiration is a key variable of the hydrological cycle since it modifies physical aspects of the climate system, such as soil and atmospheric moisture, the amount of water in rivers or aquifers, and the soil and near-to-surface air temperature. A correct representation of evapotranspiration is of great importance for the study of the climate system, for example for the identification of extreme events such as floods or droughts, or heat or cold waves. In particular, it is relevant to distinguish regions of soil-atmosphere interaction, i.e. where variations in the soil modify the atmosphere. In this paper we investigate the representation of evapotranspiration in South America according to five different estimates: four simulations from two global dynamic vegetation models, and one satellite product, during the period 1981-2010. Mainly, we study the partitioning of evapotranspiration into its components: transpiration, evaporation from vegetation, and from the soil; and how these contribute to the soil-atmosphere interaction in December-January-February. We find that although estimates of mean annual evapotranspiration show a similar spatial pattern, it is not the same for the partitioning into components. We find soil-atmosphere interaction regions that are commonly recognized in the literature: central Argentina and northeastern Brazil, which are also transition regions between dry and humid climates. Our main result is that transpiration is the component of evapotranspiration that contributes most to the soil-atmosphere interaction.

Downloads

Download data is not yet available.

References

Baker, J. C., and Coauthors, 2021: An assessment of land–atmosphere interactions over South America using satellites, reanalysis, and two global climate models. Journal of Hydrometeorology, 22, 905–922, https://doi.org/10.1175/JHM-D-20-0132.1

Baldocchi, D., and Coauthors, 2001: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem–scale carbon dioxide, water vapor, and energy flux densities. Bulletin of the American Meteorological Society, 82, 2415–2434, https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2

Beck, H. E., A. I. van Dijk, P. R. Larraondo, T. R. McVicar, M. Pan, E. Dutra, and D. G. Miralles, 2022: MSWX: Global 3-hourly 0.1° bias-corrected meteorological data including near-real-time updates and forecast ensembles. Bulletin of the American Meteorological Society, 103, https://doi.org/10.1175/BAMS-D-21-0145.1

Berg, A., and J. Sheffield, 2019: Evapotranspiration partitioning in CMIP5 models: Uncertainties and future projections. Journal of Climate, 32, 2653–2671, https://doi.org/10.1175/JCLI-D-18-0583.1

Bonan, G. B., S. Levis, L. Kergoat, and K. W. Oleson, 2002: Landscapes as patches of plant functional types: An integrating concept for climate and ecosystem models. Global Biogeochemical Cycles, 16, https://doi.org/10.1029/2000GB001360

Carlyle-Moses, D. E., 2004: Throughfall, stemflow, and canopy interception loss fluxes in a semi-arid Sierra Madre Oriental Matorral Community. Journal of Arid Environments, 58, 181–202, https://doi.org/10.1016/S0140-1963(03)00125-3

Chen, S., W. Wei, B. Tong, and L. Chen, 2023: Effects of soil moisture and vapor pressure deficit on canopy transpiration for two coniferous forests in the Loess Plateau of China. Agricultural and Forest Meteorology, 339, 109581, https://doi.org/10.1016/j.agrformet.2023.109581

Christoffersen, B. O., and Coauthors, 2014: Mechanisms of water supply and vegetation demand govern the seasonality and magnitude of evapotranspiration in Amazonia and Cerrado. Agricultural and Forest Meteorology, 191, 33–50, https://doi.org/10.1016/j.agrformet.2014.02.008

Coronato, T., and Coauthors, 2020: The impact of soil moisture–atmosphere coupling on daily maximum surface temperatures in southeastern South America. Climate Dynamics, 55, 2543–2556, https://doi.org/10.1007/s00382-020-05399-9

David, J. S., F. Valente, and J. H. Gash, 2005: Evaporation of intercepted rainfall. Encyclopedia of Hydrological Sciences, https://doi.org/10.1002/0470848944.hsa046

Dunkerley, D., 2000: Measuring interception loss and canopy storage in dryland vegetation: A brief review and evaluation of available research strategies. Hydrological Processes, 14, 669–678, https://doi.org/10.1002/(SICI)1099-1085(200003)14:4<669::AID-HYP965>3.0.CO;2-I

Federer, C. A., 1982: Transpirational supply and demand: Plant, soil, and atmospheric effects evaluated by simulation. Water Resources Research, 18, 355–362, https://doi.org/10.1029/WR018i002p00355

Gash, J. H., 1979: An analytical model of rainfall interception by forests. Quarterly Journal of the Royal Meteorological Society, 105, 43–55, https://doi.org/10.1002/qj.49710544304

Goergen, G., R. H. Valdés, G. A. Degrazia, R. A. Gotuzzo, D. L. Herdies, L. G. de Gonçalves, and D. R. Roberti, 2020: Energy and CO2 fluxes over native fields of southern Brazil through multi-objective calibration of Inland Model. Geosciences, 10, 479, https://doi.org/10.3390/geosciences10120479

Goymer, P., 2017: Spotlight on South America. Nature Ecology & Evolution, 1, https://doi.org/10.1038/s41559-017-0129

Hartley, A. J., N. MacBean, G. Georgievski, and S. Bontemps, 2017: Uncertainty in plant functional type distributions and its impact on land surface models. Remote Sensing of Environment, 203, 71–89, https://doi.org/10.1016/j.rse.2017.07.037

Jahromi, M. N., D. Miralles, A. Koppa, D. Rains, S. Zand-Parsa, H. Mosaffa, and S. Jamshidi, 2022: Ten Years of gleam: A review of scientific advances and applications. Computational Intelligence for Water and Environmental Sciences, 525–540, https://doi.org/10.1007/978-981-19-2519-1_25

Jung, M., and Coauthors, 2020: Scaling carbon fluxes from eddy covariance sites to Globe: Synthesis and evaluation of the FLUXCOM approach. Biogeosciences, 17, 1343–1365, https://doi.org/10.5194/bg-17-1343-2020

Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 1138–1140, https://www.science.org/doi/10.1126/science.1100217

Kumar, S., T. Holmes, D. Mocko, S. Wang, and C. Peters-Lidard, 2018: Attribution of flux partitioning variations between land surface models over the continental U.S. Remote Sensing, 10, 751, https://doi.org/10.3390/rs10050751

Lawrence, D. M., P. E. Thornton, K. W. Oleson, and G. B. Bonan, 2007: The partitioning of evapotranspiration into transpiration, soil evaporation, and canopy evaporation in a GCM: Impacts on land–atmosphere interaction. Journal of Hydrometeorology, 8, 862–880, https://doi.org/10.1175/JHM596.1

Li, W., H.-J. Hendricks Franssen, P. Brunner, Z. Li, Z. Wang, Y. Wang, and W. Wang, 2022: The role of soil texture on diurnal and seasonal cycles of potential evaporation over saturated bare soils – lysimeter studies. Journal of Hydrology, 613, 128194, https://doi.org/10.1016/j.jhydrol.2022.128194

Liu, Y. Y., A. I. van Dijk, M. F. McCabe, J. P. Evans, and R. A. de Jeu, 2013: Global vegetation biomass change (1988-2008) and attribution to environmental and human drivers. Global Ecology and Biogeography, 22, 692–705, https://doi.org/10.1111/geb.12024

Liu, Y., Q. Yue, Q. Wang, J. Yu, Y. Zheng, X. Yao, and S. Xu, 2021: A framework for actual evapotranspiration assessment and projection based on meteorological, vegetation and hydrological remote sensing products. Remote Sensing, 13, 3643, https://doi.org/10.3390/rs13183643

Magliano, P. N., D. D. Breshears, R. J. Fernández, and E. G. Jobbágy, 2015: Rainfall intensity switches ecohydrological runoff/runon redistribution patterns in dryland vegetation patches. Ecological Applications, 25, 2094–2100, https://doi.org/10.1890/15-0550.1

Martens, B., and Coauthors, 2017: Gleam v3: Satellite-based land evaporation and root-zone soil moisture. Geoscientific Model Development, 10, 1903–1925, https://doi.org/10.5194/gmd-10-1903-2017

Martens, B., W. Waegeman, W. A. Dorigo, N. E. Verhoest, and D. G. Miralles, 2018: Terrestrial evaporation response to modes of climate variability. npj Climate and Atmospheric Science, 1, https://doi.org/10.1038/s41612-018-0053-5

Melo, D. C., and Coauthors, 2021: Are remote sensing evapotranspiration models reliable across South American ecoregions? Water Resources Research, 57, https://doi.org/10.1029/2020WR028752

Menéndez, C. G., and Coauthors, 2019: Temperature variability and soil–atmosphere interaction in South America simulated by two regional climate models. Climate Dynamics, 53, 2919–2930, https://doi.org/10.1007/s00382-019-04668-6

Miralles, D. G., T. R. Holmes, R. A. De Jeu, J. H. Gash, A. G. Meesters, and A. J. Dolman, 2011: Global land-surface evaporation estimated from satellite-based observations. Hydrology and Earth System Sciences, 15, 453–469, https://doi.org/10.5194/hess-15-453-2011

Miralles, D., and Coauthors, 2016: The WACMOS-ET project – part 2: Evaluation of global terrestrial evaporation data sets. Hydrology and Earth System Sciences, 20, 823–842, https://doi.org/10.5194/hess-20-823-2016

Miralles, D. G., P. Gentine, S. I. Seneviratne, and A. J. Teuling, 2019: Land–atmospheric feedbacks during droughts and Heatwaves: State of the science and current challenges. Annals of the New York Academy of Sciences, 1436, 19–35, https://doi.org/10.1111/nyas.13912

Moreira, A. A., A. L. Ruhoff, D. R. Roberti, V. de Souza, H. R. da Rocha, and R. C. Paiva, 2019: Assessment of terrestrial water balance using remote sensing data in South America. Journal of Hydrology, 575, 131–147, https://doi.org/10.1016/j.jhydrol.2019.05.021

Mueller, B., and Coauthors, 2011: Evaluation of global observations-based evapotranspiration datasets and IPCC AR4 simulations. Geophysical Research Letters, 38, https://doi.org/10.1029/2010gl046230

Newman, B. D., and Coauthors, 2006: Ecohydrology of water‐Limited Environments: A scientific vision. Water Resources Research, 42, https://doi.org/10.1029/2005wr004141

Notaro, M., 2008: Statistical identification of global hot spots in soil moisture feedbacks among IPCC AR4 models. Journal of Geophysical Research: Atmospheres, 113, https://doi.org/10.1029/2007jd009199

Oki, T., and S. Kanae, 2006: Global hydrological cycles and world water resources. Science, 313, 1068–1072, https://doi.org/10.1126/science.1128845

Pitman, A. J., 2003: The evolution of, and revolution in, land surface schemes designed for climate models. International Journal of Climatology, 23, 479–510, https://doi.org/10.1002/joc.893

Priestley, C. H., and R. J. Taylor, 1972: On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review, 100, 81–92, https://doi.org/10.1175/1520-0493(1972)100<0081:otaosh>2.3.co;2

Qi, Y., H. Chen, and S. Zhu, 2023: Influence of land–atmosphere coupling on low temperature extremes over Southern Eurasia. Journal of Geophysical Research: Atmospheres, 128, https://doi.org/10.1029/2022jd037252

Rezende, L. F., and Coauthors, 2022: Impacts of land use change and atmospheric CO2 on gross primary productivity (GPP), evaporation, and climate in southern Amazon. Journal of Geophysical Research: Atmospheres, 127, https://doi.org/10.1029/2021jd034608

Rosales D. A., 2023: Tesis de licenciatura “Evapotranspiración modelada en Sudamérica: influencia del cambio climático y del uso del suelo”. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. https://hdl.handle.net/20.500.12110/seminario_nATM000005_Rosales

Ruscica, R. C., A. A. Sörensson, and C. G. Menéndez, 2015: Pathways between soil moisture and precipitation in southeastern South America. Atmospheric Science Letters, 16, 267–272, https://doi.org/10.1002/asl2.552

Ruscica, R. C., C. G. Menéndez, and A. A. Sörensson, 2016: Land surface-atmosphere interaction in future South American climate using a multi-model ensemble. Atmospheric Science Letters, 17, 141–147, https://doi.org/10.1002/asl.635

Ruscica, R. C., and Coauthors, 2022: Evapotranspiration trends and variability in southeastern South America: The roles of land‐cover change and precipitation variability. International Journal of Climatology, 42, 2019–2038, https://doi.org/10.1002/joc.7350

Sakschewski, B., and Coauthors, 2021: Variable tree rooting strategies are key for modelling the distribution, productivity and evapotranspiration of tropical evergreen forests. Biogeosciences, 18, 4091–4116, https://doi.org/10.5194/bg-18-4091-2021

Schaphoff, S., and Coauthors, 2018: LPJML4 – a dynamic global vegetation model with managed land – part 1: Model description. Geoscientific Model Development, 11, 1343–1375, https://doi.org/10.5194/gmd-11-1343-2018

Schlesinger, W. H., and S. Jasechko, 2014: Transpiration in the Global Water Cycle. Agricultural and Forest Meteorology, 189–190, 115–117, https://doi.org/10.1016/j.agrformet.2014.01.011

Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010: Investigating soil moisture–climate interactions in a changing climate: A Review. Earth-Science Reviews, 99, 125–161, https://doi.org/10.1016/j.earscirev.2010.02.004

Sörensson, A. A., and C. G. Menéndez, 2011: Summer soil–precipitation coupling in South America. Tellus A: Dynamic Meteorology and Oceanography, 63, 56, https://doi.org/10.1111/j.1600-0870.2010.00468.x

Sörensson, A. A., and R. C. Ruscica, 2018: Intercomparison and uncertainty assessment of nine evapotranspiration estimates over South America. Water Resources Research, 54, 2891–2908, https://doi.org/10.1002/2017wr021682

Spennemann, P. C., M. Salvia, R. C. Ruscica, A. A. Sörensson, F. Grings, and H. Karszenbaum, 2018: Land-atmosphere interaction patterns in southeastern South America using satellite products and Climate Models. International Journal of Applied Earth Observation and Geoinformation, 64, 96–103, https://doi.org/10.1016/j.jag.2017.08.016

Trenberth, K. E., J. T. Fasullo, and J. Kiehl, 2009: Earth’s Global Energy Budget. Bulletin of the American Meteorological Society, 90, 311–324, https://doi.org/10.1175/2008bams2634.1

Vilà‐Guerau de Arellano, J., and Coauthors, 2023: Advancing understanding of land–atmosphere interactions by breaking discipline and scale barriers. Annals of the New York Academy of Sciences, 1522, 74–97, https://doi.org/10.1111/nyas.14956

Wang, L., S. P. Good, and K. K. Caylor, 2014: Global synthesis of vegetation control on evapotranspiration partitioning. Geophysical Research Letters, 41, 6753–6757, https://doi.org/10.1002/2014gl061439

Wang, Z., C. Zhan, L. Ning, and H. Guo, 2021: Evaluation of global terrestrial evapotranspiration in CMIP6 models. Theoretical and Applied Climatology, 143, 521–531, https://doi.org/10.1007/s00704-020-03437-4

Wei, Z., K. Yoshimura, L. Wang, D. G. Miralles, S. Jasechko, and X. Lee, 2017: Revisiting the contribution of transpiration to global terrestrial evapotranspiration. Geophysical Research Letters, 44, 2792–2801, https://doi.org/10.1002/2016gl072235

Wild, M., D. Folini, C. Schär, N. Loeb, E. G. Dutton, and G. König-Langlo, 2012: The Global Energy Balance from a surface perspective. Climate Dynamics, 40, 3107–3134, https://doi.org/10.1007/s00382-012-1569-8

Wu, L., and J. Zhang, 2013: Role of land-atmosphere coupling in summer droughts and floods over eastern China for the 1998 and 1999 cases. Chinese Science Bulletin, 58, 3978–3985, https://doi.org/10.1007/s11434-013-5855-6

Zeng, X., M. Barlage, C. Castro, and K. Fling, 2010: Comparison of land–precipitation coupling strength using observations and models. Journal of Hydrometeorology, 11, 979–994, https://doi.org/10.1175/2010jhm1226.1

Zhang, Y., and Coauthors, 2016: Multi-decadal trends in global terrestrial evapotranspiration and its components. Scientific Reports, 6, https://doi.org/10.1038/srep19124

Published

2024-06-28

Issue

Section

Artículos