La circulación de Hadley al sudoeste de América del Sur: métricas para su caracterización
DOI:
https://doi.org/10.24215/1850468Xe029Palabras clave:
métricas, tendencias, ERA5, circulación de Hadley, sudoeste de SudaméricaResumen
Este trabajo proporciona una evaluación de las métricas más utilizadas para caracterizar la rama de descenso de la Celda de Hadley y sus tendencias en los últimos 40 años sobre la región del sudoeste de América del Sur, a través del análisis de siete métricas hemisféricas y tres regionales obtenidas a partir de variables meteorológicas pertenecientes al reanálisis ERA5 para el período 1979-2021. Las relaciones entre las métricas fueron determinadas a partir del coeficiente de correlación de Pearson y las tendencias decadales a partir del test de Mann-Kendall. Los resultados encontrados sugieren relaciones estadísticamente significativas entre la métrica hemisférica de referencia función corriente del flujo de masa en 500 hPa, la métrica regional vinculada a la posición latitudinal del Anticiclón del Pacífico Sur y las métricas de la troposfera baja relacionadas con el máximo de la presión a nivel del mar y la latitud donde cambia de signo el viento en superficie tanto en la escala anual como estacional. Las métricas vinculadas al jet polar impulsado por las perturbaciones y a la precipitación menos la evaporación regional capturan la variabilidad de la posición latitudinal del Anticiclón del Pacífico Sur, mientras que la métrica hemisférica de la troposfera baja precipitación menos evaporación captura la variabilidad de la métrica de referencia. En cuanto a las tendencias por década de los promedios anuales de la rama de descenso de la Celda de Hadley durante los últimos 40 años se encontraron tendencias negativas estadísticamente significativas, lo cual indica una expansión de la Celda de Hadley durante las últimas cuatro décadas. Esto podría explicar en cierta medida las tendencias decrecientes de la precipitación en la región del sudoeste de América del Sur.
Descargas
Citas
Adam, O., Scheiner, T., Harnik, N., 2014: Role of Changes in Mean Temperatures versus Temperature Gradients in the Recent Widening of the Hadley Circulation. Journal of Climate, vol 27, https://doi.org/10.1175/JCLI-D-14-00140.1
Adam, O., y colaboradores, 2018: The TropD software package (v1): Standardized methods for calculating tropical‐width diagnostics. Geoscientific Model Development, 11(10), 4339–4357. https://doi.org/10.5194/gmd-11-4339-2018
Barrett, B. S. y Hameed, S., 2017: Seasonal Variability in Precipitation in Central and Southern Chile: Modulation by the South Pacific High, J. Climate, 30, 55–69.
Bengtsson, L.; Hagemann, S.; Hodges, K.I., 2004: Can climate trends be calculated from reanalysis data? J. Geophys. Res. Atmos. 109, D11111
Birner, T., 2010: Recent widening of the tropical belt from global tropopause statis- tics: Sensitivities. J. Geophys. Res. Atmos., 115, D23109
Birner, T., Davis, S. M., y Seidel, D. J, 2014: The changing width of Earth's tropical belt, Phys. Today, 67, 38–44, https://doi.org/10.1063/PT.3.2620
Boisier, JP, y colaboradores, 2018: Anthropogenic drying in central-southern Chile evidenced by long-term observations and climate model simulations. Elem Sci Anth, 6: 74. https://doi.org/10.1525/elementa.328
Boisier, J. P., R. Rondanelli, R. D. Garreaud, and F. Muñoz, 2016: Anthropogenic and natural contributions to the Southeast Pacific precipitation decline and recent megadrought in central Chile, Geophys. Res. Lett., 43, https://doi.org/10.1002/2015GL067265
Byrne, N. J., y colaboradores, 2019: Subseasonal-to-seasonal predictability of the Southern Hemisphere Eddy-driven jet during austral spring and early summer. Journal ofGeophysical Research: Atmospheres,124, 6841–6855. https://doi.org/10.1029/2018JD030173
Byrne, N. J., y Shepherd, T. G., 2018: Seasonal persistence of circulation anomalies in the Southern Hemisphere stratosphere and its implications for the troposphere. Journal of Climate,31(9), 3467–3483.
Caballero, R., 2007: Role of eddies in the interannual variability of Hadley cell strength. Geophys. Res. Lett., 34, L22705, https://doi.org/10.1029/2007GL030971
Cai, W., y colaboradores, 2012: Rainfall reductions over Southern Hemisphere semiarid regions: the role of subtropical dry zone expansion, Sci. Rep., 2, article number 702, https://doi.org/10.1038/srep00702
Choi, J.,y colaboradores, 2014: Further observational evidence of Hadley cell widening in the Southern Hemisphere, Geophys. Res. Lett., 41, 2590–2597, https://doi.org/10.1002/2014GL059426
Chen, S., y colaboradores, 2014: Regional changes in the annual mean Hadley circulation in recent decades. Journal of Geophysical Research: Atmospheres, 119, 7815–7832. https://doi.org/10.1002/2014JD021540
Davis, N., Birner, T., 2017: On the Discrepancies in Tropical Belt Expansion between Reanalyses and Climate Models and among Tropical Belt Width Metrics. Journal of Climate, 30(4), 1211–1231. https://doi.org/10.1175/JCLI-D-16-0371.1
Davis, S. M., and K. H. Rosenlof, 2012: A multidiagnostic intercomparison of tropical- width time series using reanalyses and satellite observations. J. Clim., 25, 1061– 1078.
Díaz, L.B. y Vera, C.S., 2018: South American precipitation changes simulated by PMIP3/ CMIP5 models during the Little Ice Age and the recent global warming period. Int. Journal. Climatol. 2018; 1-13.
Fahad, A. y colaboradores, 2020: How will southern hemisphere subtropical anticyclones respond to global warming? Mechanisms and seasonality in CMIP5 and CMIP6 model projections. Climate Dynamics, https://doi.org/10.1007/s00382-020-05290-7
Flores-Aqueveque, V y colaboradores, 2020: South Pacific Subtropical High from the late Holocene to the end of the 21st century: insights from climate proxies and general circulation models. Clim. Past, 16, 79–99, 2020, https://doi.org/10.5194/cp-16-79-2020
Freitas, A. C. y Ambrizzi, T., 2015: Recent Changes in the Annual Mean Regional Hadley Circulation and Their Impacts on South America. Advances in Meteorology. Article ID 780205. https://doi.org/10.1155/2015/780205
Garreaud R. D. y colaboradores, 2020: The Central Chile Mega Drought (2010–2018): A climate dynamics perspective, International Journal Climate, https://doi.org/10.1002/joc.6219
Garreaud, RD. y colaboradores, 2017: The 2010–2015 megadrought in central Chile: Impacts on regional hydroclimate and vegetation. Hydrol Earth Syst Sci 21(12): 6307–6327. https://doi.org/10.5194/hess-21-6307-2017
Garreaud, R, Lopez, P, Minvielle, M and Rojas, M., 2013: Large-Scale Control on the Patagonian Climate. J Climate 26(1): 215–230. https://doi.org/10.1175/JCLI-D-12-00001.1
Grise, K. M. y Davis, S. M., 2020: Hadley cell expansion in CMIP6 models, Atmos. Chem. Phys., 20, 5249–5268, https://doi.org/10.5194/acp-20-5249-2020.
Grise, K. M., y colaboradores, 2019: Recent tropical expansion: Natural variability or forced response? J. Climate, 32, 1551–1571, https://doi.org/10.1175/JCLI-D-18-0444.1
Grise, K. M., y colaboradores, 2018: Regional and seasonal characteristics of the recent expansion of the tropics, J. Climate, 31, 6839–6856, https://doi.org/10.1175/JCLI-D-18-0060.1
Grise, K. M. y Polvani, L. M, 2016: Is climate sensitivity related to dy-namical sensitivity?, J. Geophys. Res.-Atmos., 121, 5159–5176, https://doi.org/10.1002/2015JD024687
IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, In press, https://doi.org/10.1017/9781009157896
Kang. S y Polvani. L, 2011: The Interannual Relationship between the Latitude of the Eddy-Driven Jet and the Edge of the Hadley Cell, Journal of Climate, vol 24, https://doi.org/10.1175/2010JCLI4077.1
Kendall, M. G., 1975: Rank Correlation Methods, Griffin, London.
Lucas, C., y colaboradores, 2014: The expanding tropics: a critical assessment of the observational an modeling studies. WIREs Clim Change 5: 89-112.
Lucas, C., y Nguyen, H., 2015: Regional characteristics of tropical expansion and the role of climate variability. Journal of Geophysical Research: Atmospheres, 120(14), 6809– 6824. https://doi.org/10.1002/2015JD023130
Mann, H. B., 1945: 'Nonparametric tests against trend', Econometrica 13, 245-259.
Mantua, NJ, Hare, SR, Zhang, Y, Wallace, JM y Francis, RC, 1997: A Pacific Interdecadal Climate Oscillation with Impacts on Salmon Production. Bull Amer Meteor Soc 78(6): 1069–1079. DOI: https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2
Manney, G. L., y Hegglin, M. I., 2018: Seasonal and regional variations of long-term changes in upper-tropospheric jets from reanalyses. Journal of Climate, 31(1), 423–448.
Montecinos, A and Aceituno, P., 2003: Seasonality of the ENSO-Related Rainfall Variability in Central Chile and Associated Circulation Anomalies. J Climate 16(2): 281–296. DOI: https://doi.org/10.1175/1520-0442(2003)016<0281:SOTERR>2.0.CO;2
Morales M.S., y colaboradores, 2020: Six hundred years of South American tree rings reveal an increase in severe hydroclimatic events since mid-20th century. PNAS, July 21, 2020, vol. 117 | no. 29, 16817
Nguyen H., Hendon, H.H., Lim, E.P. et al, 2018: Variability of the extent of the Hadley circulation in the southern hemisphere: a regional perspective. Clim Dyn, vol 50, 129-152, https://doi.org/10.1007/s00382-017-3592-2
Rivas, M. B., y A. Stoffelen, 2019: Characterizing ERA-Interim and ERA5 surface wind biases using ASCAT. Ocean Sci., 15, 831–852, https://doi.org/10.5194/os-15-831-2019
Reboita, M. y colaboradores, 2019: The South Atlantic Subtropical Anticyclone: Present and Future Climate. Front. Earth Sci. 7:8. https://doi.org/10.3389/feart.2019.00008
Rutllant, J y Fuenzalida, H., 1991: Synoptic aspects of the central chile rainfall variability associated with the southern oscillation. Int J Climatol 11(1): 63–76. https://doi.org/10.1002/joc.3370110105
Saurral, R., Camilloni, I., Barros, V., 2017: Low-frequency variability and trends in centennial precipitation stations in southern South America. Int. J. Climatol. 37: 1774–1793, https://doi.org/10.1002/joc.4810
Solomon, A., y colaboradores, 2016: Contrasting upper and lower atmospheric metrics of tropical expansion in the Southern Hemisphere, Geophys. Res.Lett.,43, 10,496–10,503, https://doi.org/10.1002/2016GL070917
Souza E. B, y Ambrizzi T, 2002: ENSO impacts on the SouthAmerican rainfall during 1980s: Hadley and Walker circulation. Atmósfera 15: 105–120
Schwendike, J.P. y colaboradores, 2014: Local Partitioning of the overturning circulation in the tropics and the connection to the Hadley and Walker circulations, J. Geophys. Res. Atmos., 119, 1322– 1339, https://doi.org/10.1002/2013JD020742
Staten y colaboradores, 2020: Tropical Widening From Global Variations to Regional Impacts, American Meteorological Society, https://doi.org/10.1175/BAMS-D-19-0047.1
Staten, P.W., Grise, K.M, Davis, S.M.,Karnauskas, K.B, Davis, N.A., 2019: Regional widening of tropical overturning: Forced change, natural variability, and recent trends, American Geophysical Union, https://doi.org/10.1029/2018JD030100
Staten, P.W. y colaboradores, 2018: Re- examining tropical expansion. Nature Climate Change, 8(9), 768-775. https://doi.org/10.1038/s41558-018-0246-2
Studholme, J., y S. Gulev, 2018: Concurrent Changes to Hadley Circulation and the Meridional Distribution of Tropical Cyclones. J. Climate. https://doi.org/10.1175/JCLI-D-17-0852.1
Varma, V., y colaboradores, 2012: Holocene evolution of the Southern Hemisphere westerly winds in transient simulations with global climate models. Climate of the Past 8: 391–402.
Vera, C.S y colaboradores, 2019: Influence of Anthropogenically-Forced Global Warming and Natural Climate Variability in the Rainfall Changes Observed Over the South American Altiplano. Front. Environ. Sci., https://doi.org/10.3389/fenvs.2019.00087
Vera, CS y Díaz, L., 2015: Anthropogenic influence on summer precipitation trends over South America in CMIP5 models. International Journal of Climatology 35(10): 3172–3177.
Villamayor y colaboradores, 2021: Causes of the long-term variability of southwestern South America precipitation in the IPSL- CM6A-LR model. Climate Dynamics, Springer Verlag, 2021. Insu-03230914
Vuille, M., y colaboradores, 2015: Impact of the global warming hiatus onAndean temperature,J. Geophys. Res.Atmos.,120, 3745–3757, https://doi.org/10.1002/2015JD023126
Vuille, M., y colaboradores, 2000: Interannual climate variability in the Central Andes and its relation to tropical Pacific and Atlantic forcing. Journal of Geophysical Research, Vol. 105, NO. D10, Pages 12, 460, May 27.
Waugh, D. W y colaboradores, 2018: Revisiting the relationship among metrics of tropical expansion. J. Clim. 31, 7565–7581. https://doi.org/10.1175/JCLI-D-18-0108.1
Xian, T., y colaboradores, 2021: Is Hadley Cell Expanding? Atmosphere, 12, 1699. https://doi.org/10.3390/atmos12121699
Zaplotnik y colaboradores, 2022: Recent Hadley Circulation Strengthening: A Trend or Multidecadal Variability?, Journal of Climate, https://doi.org/10.1175/JCLI-D-21-0204.1
Descargas
Publicado
Versiones
- 02-09-2024 (2)
- 28-06-2024 (1)
Número
Sección
Licencia
Derechos de autor 2024 Elizabeth Beatríz Naranjo Tamayo, Juan Antonio Rivera, Maximiliano Viale, Ricardo Villalba
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Acorde a estos términos, el material se puede compartir (copiar y redistribuir en cualquier medio o formato) y adaptar (remezclar, transformar y crear a partir del material otra obra), siempre que a) se cite la autoría y la fuente original de su publicación (revista y URL de la obra), b) no se use para fines comerciales y c) se mantengan los mismos términos de la licencia.