This is an outdated version published on 2024-06-28. Read the most recent version.

The Hadley circulation in southwestern South America: metrics for its characterization

Authors

  • Elizabeth Beatríz Naranjo Tamayo Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales, Argentina
  • Juan Antonio Rivera Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales, Argentina
  • Maximiliano Viale Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales, Argentina
  • Ricardo Villalba Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales, Argentina

DOI:

https://doi.org/10.24215/1850468Xe029

Keywords:

metrics, trends, ERA5, Hadley circulations, southwestern South America

Abstract

This paper provides an evaluation of the most commonly used metrics to characterize the downward branch of the Hadley cell and its trends over the last 40 years over the southwestern region of South America, through the analysis of seven hemispheric and three regional metrics obtained from meteorological variables associated to the ERA5 reanalysis for the period 1979-2021. Relationships between metrics were determined from Pearson's correlation coefficient and decadal trends from the Mann-Kendall test. The results found suggest statistically significant relationships between the hemispheric metric of reference mass flux current function at 500 hPa, the regional metric linked to the latitudinal position of the South Pacific Anticyclone, and the lower tropospheric metrics related to the maximum of sea level pressure and the latitude where the surface wind changes sign on both annual and seasonal scales. The metrics linked to eddy driven jet and regional precipitation minus evaporation capture the variability of the latitudinal position of the South Pacific Anticyclone, while the hemispheric lower troposphere metric precipitation minus evaporation captures the variability of the reference metric. Regarding the trends by decade of the annual averages of downward branch of the Hadley Cell over the last 40 years, statistically significant negative trends were found, indicating an expansion of the Hadley Cell over the last four decades. This could explain to some extent the decreasing precipitation trends in the southwestern region of South America.

Downloads

Download data is not yet available.

References

Adam, O., Scheiner, T., Harnik, N., 2014: Role of Changes in Mean Temperatures versus Temperature Gradients in the Recent Widening of the Hadley Circulation. Journal of Climate, vol 27, https://doi.org/10.1175/JCLI-D-14-00140.1

Adam, O., y colaboradores, 2018: The TropD software package (v1): Standardized methods for calculating tropical‐width diagnostics. Geoscientific Model Development, 11(10), 4339–4357. https://doi.org/10.5194/gmd-11-4339-2018

Barrett, B. S. y Hameed, S., 2017: Seasonal Variability in Precipitation in Central and Southern Chile: Modulation by the South Pacific High, J. Climate, 30, 55–69.

Bengtsson, L.; Hagemann, S.; Hodges, K.I., 2004: Can climate trends be calculated from reanalysis data? J. Geophys. Res. Atmos. 109, D11111

Birner, T., 2010: Recent widening of the tropical belt from global tropopause statis- tics: Sensitivities. J. Geophys. Res. Atmos., 115, D23109

Birner, T., Davis, S. M., y Seidel, D. J, 2014: The changing width of Earth's tropical belt, Phys. Today, 67, 38–44, https://doi.org/10.1063/PT.3.2620

Boisier, JP, y colaboradores, 2018: Anthropogenic drying in central-southern Chile evidenced by long-term observations and climate model simulations. Elem Sci Anth, 6: 74. https://doi.org/10.1525/elementa.328

Boisier, J. P., R. Rondanelli, R. D. Garreaud, and F. Muñoz, 2016: Anthropogenic and natural contributions to the Southeast Pacific precipitation decline and recent megadrought in central Chile, Geophys. Res. Lett., 43, https://doi.org/10.1002/2015GL067265

Byrne, N. J., y colaboradores, 2019: Subseasonal-to-seasonal predictability of the Southern Hemisphere Eddy-driven jet during austral spring and early summer. Journal ofGeophysical Research: Atmospheres,124, 6841–6855. https://doi.org/10.1029/2018JD030173

Byrne, N. J., y Shepherd, T. G., 2018: Seasonal persistence of circulation anomalies in the Southern Hemisphere stratosphere and its implications for the troposphere. Journal of Climate,31(9), 3467–3483.

Caballero, R., 2007: Role of eddies in the interannual variability of Hadley cell strength. Geophys. Res. Lett., 34, L22705, https://doi.org/10.1029/2007GL030971

Cai, W., y colaboradores, 2012: Rainfall reductions over Southern Hemisphere semiarid regions: the role of subtropical dry zone expansion, Sci. Rep., 2, article number 702, https://doi.org/10.1038/srep00702

Choi, J.,y colaboradores, 2014: Further observational evidence of Hadley cell widening in the Southern Hemisphere, Geophys. Res. Lett., 41, 2590–2597, https://doi.org/10.1002/2014GL059426

Chen, S., y colaboradores, 2014: Regional changes in the annual mean Hadley circulation in recent decades. Journal of Geophysical Research: Atmospheres, 119, 7815–7832. https://doi.org/10.1002/2014JD021540

Davis, N., Birner, T., 2017: On the Discrepancies in Tropical Belt Expansion between Reanalyses and Climate Models and among Tropical Belt Width Metrics. Journal of Climate, 30(4), 1211–1231. https://doi.org/10.1175/JCLI-D-16-0371.1

Davis, S. M., and K. H. Rosenlof, 2012: A multidiagnostic intercomparison of tropical- width time series using reanalyses and satellite observations. J. Clim., 25, 1061– 1078.

Díaz, L.B. y Vera, C.S., 2018: South American precipitation changes simulated by PMIP3/ CMIP5 models during the Little Ice Age and the recent global warming period. Int. Journal. Climatol. 2018; 1-13.

Fahad, A. y colaboradores, 2020: How will southern hemisphere subtropical anticyclones respond to global warming? Mechanisms and seasonality in CMIP5 and CMIP6 model projections. Climate Dynamics, https://doi.org/10.1007/s00382-020-05290-7

Flores-Aqueveque, V y colaboradores, 2020: South Pacific Subtropical High from the late Holocene to the end of the 21st century: insights from climate proxies and general circulation models. Clim. Past, 16, 79–99, 2020, https://doi.org/10.5194/cp-16-79-2020

Freitas, A. C. y Ambrizzi, T., 2015: Recent Changes in the Annual Mean Regional Hadley Circulation and Their Impacts on South America. Advances in Meteorology. Article ID 780205. https://doi.org/10.1155/2015/780205

Garreaud R. D. y colaboradores, 2020: The Central Chile Mega Drought (2010–2018): A climate dynamics perspective, International Journal Climate, https://doi.org/10.1002/joc.6219

Garreaud, RD. y colaboradores, 2017: The 2010–2015 megadrought in central Chile: Impacts on regional hydroclimate and vegetation. Hydrol Earth Syst Sci 21(12): 6307–6327. https://doi.org/10.5194/hess-21-6307-2017

Garreaud, R, Lopez, P, Minvielle, M and Rojas, M., 2013: Large-Scale Control on the Patagonian Climate. J Climate 26(1): 215–230. https://doi.org/10.1175/JCLI-D-12-00001.1

Grise, K. M. y Davis, S. M., 2020: Hadley cell expansion in CMIP6 models, Atmos. Chem. Phys., 20, 5249–5268, https://doi.org/10.5194/acp-20-5249-2020.

Grise, K. M., y colaboradores, 2019: Recent tropical expansion: Natural variability or forced response? J. Climate, 32, 1551–1571, https://doi.org/10.1175/JCLI-D-18-0444.1

Grise, K. M., y colaboradores, 2018: Regional and seasonal characteristics of the recent expansion of the tropics, J. Climate, 31, 6839–6856, https://doi.org/10.1175/JCLI-D-18-0060.1

Grise, K. M. y Polvani, L. M, 2016: Is climate sensitivity related to dy-namical sensitivity?, J. Geophys. Res.-Atmos., 121, 5159–5176, https://doi.org/10.1002/2015JD024687

IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, In press, https://doi.org/10.1017/9781009157896

Kang. S y Polvani. L, 2011: The Interannual Relationship between the Latitude of the Eddy-Driven Jet and the Edge of the Hadley Cell, Journal of Climate, vol 24, https://doi.org/10.1175/2010JCLI4077.1

Kendall, M. G., 1975: Rank Correlation Methods, Griffin, London.

Lucas, C., y colaboradores, 2014: The expanding tropics: a critical assessment of the observational an modeling studies. WIREs Clim Change 5: 89-112.

Lucas, C., y Nguyen, H., 2015: Regional characteristics of tropical expansion and the role of climate variability. Journal of Geophysical Research: Atmospheres, 120(14), 6809– 6824. https://doi.org/10.1002/2015JD023130

Mann, H. B., 1945: 'Nonparametric tests against trend', Econometrica 13, 245-259.

Mantua, NJ, Hare, SR, Zhang, Y, Wallace, JM y Francis, RC, 1997: A Pacific Interdecadal Climate Oscillation with Impacts on Salmon Production. Bull Amer Meteor Soc 78(6): 1069–1079. DOI: https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2

Manney, G. L., y Hegglin, M. I., 2018: Seasonal and regional variations of long-term changes in upper-tropospheric jets from reanalyses. Journal of Climate, 31(1), 423–448.

Montecinos, A and Aceituno, P., 2003: Seasonality of the ENSO-Related Rainfall Variability in Central Chile and Associated Circulation Anomalies. J Climate 16(2): 281–296. DOI: https://doi.org/10.1175/1520-0442(2003)016<0281:SOTERR>2.0.CO;2

Morales M.S., y colaboradores, 2020: Six hundred years of South American tree rings reveal an increase in severe hydroclimatic events since mid-20th century. PNAS, July 21, 2020, vol. 117 | no. 29, 16817

Nguyen H., Hendon, H.H., Lim, E.P. et al, 2018: Variability of the extent of the Hadley circulation in the southern hemisphere: a regional perspective. Clim Dyn, vol 50, 129-152, https://doi.org/10.1007/s00382-017-3592-2

Rivas, M. B., y A. Stoffelen, 2019: Characterizing ERA-Interim and ERA5 surface wind biases using ASCAT. Ocean Sci., 15, 831–852, https://doi.org/10.5194/os-15-831-2019

Reboita, M. y colaboradores, 2019: The South Atlantic Subtropical Anticyclone: Present and Future Climate. Front. Earth Sci. 7:8. https://doi.org/10.3389/feart.2019.00008

Rutllant, J y Fuenzalida, H., 1991: Synoptic aspects of the central chile rainfall variability associated with the southern oscillation. Int J Climatol 11(1): 63–76. https://doi.org/10.1002/joc.3370110105

Saurral, R., Camilloni, I., Barros, V., 2017: Low-frequency variability and trends in centennial precipitation stations in southern South America. Int. J. Climatol. 37: 1774–1793, https://doi.org/10.1002/joc.4810

Solomon, A., y colaboradores, 2016: Contrasting upper and lower atmospheric metrics of tropical expansion in the Southern Hemisphere, Geophys. Res.Lett.,43, 10,496–10,503, https://doi.org/10.1002/2016GL070917

Souza E. B, y Ambrizzi T, 2002: ENSO impacts on the SouthAmerican rainfall during 1980s: Hadley and Walker circulation. Atmósfera 15: 105–120

Schwendike, J.P. y colaboradores, 2014: Local Partitioning of the overturning circulation in the tropics and the connection to the Hadley and Walker circulations, J. Geophys. Res. Atmos., 119, 1322– 1339, https://doi.org/10.1002/2013JD020742

Staten y colaboradores, 2020: Tropical Widening From Global Variations to Regional Impacts, American Meteorological Society, https://doi.org/10.1175/BAMS-D-19-0047.1

Staten, P.W., Grise, K.M, Davis, S.M.,Karnauskas, K.B, Davis, N.A., 2019: Regional widening of tropical overturning: Forced change, natural variability, and recent trends, American Geophysical Union, https://doi.org/10.1029/2018JD030100

Staten, P.W. y colaboradores, 2018: Re- examining tropical expansion. Nature Climate Change, 8(9), 768-775. https://doi.org/10.1038/s41558-018-0246-2

Studholme, J., y S. Gulev, 2018: Concurrent Changes to Hadley Circulation and the Meridional Distribution of Tropical Cyclones. J. Climate. https://doi.org/10.1175/JCLI-D-17-0852.1

Varma, V., y colaboradores, 2012: Holocene evolution of the Southern Hemisphere westerly winds in transient simulations with global climate models. Climate of the Past 8: 391–402.

Vera, C.S y colaboradores, 2019: Influence of Anthropogenically-Forced Global Warming and Natural Climate Variability in the Rainfall Changes Observed Over the South American Altiplano. Front. Environ. Sci., https://doi.org/10.3389/fenvs.2019.00087

Vera, CS y Díaz, L., 2015: Anthropogenic influence on summer precipitation trends over South America in CMIP5 models. International Journal of Climatology 35(10): 3172–3177.

Villamayor y colaboradores, 2021: Causes of the long-term variability of southwestern South America precipitation in the IPSL- CM6A-LR model. Climate Dynamics, Springer Verlag, 2021. Insu-03230914

Vuille, M., y colaboradores, 2015: Impact of the global warming hiatus onAndean temperature,J. Geophys. Res.Atmos.,120, 3745–3757, https://doi.org/10.1002/2015JD023126

Vuille, M., y colaboradores, 2000: Interannual climate variability in the Central Andes and its relation to tropical Pacific and Atlantic forcing. Journal of Geophysical Research, Vol. 105, NO. D10, Pages 12, 460, May 27.

Waugh, D. W y colaboradores, 2018: Revisiting the relationship among metrics of tropical expansion. J. Clim. 31, 7565–7581. https://doi.org/10.1175/JCLI-D-18-0108.1

Xian, T., y colaboradores, 2021: Is Hadley Cell Expanding? Atmosphere, 12, 1699. https://doi.org/10.3390/atmos12121699

Zaplotnik y colaboradores, 2022: Recent Hadley Circulation Strengthening: A Trend or Multidecadal Variability?, Journal of Climate, https://doi.org/10.1175/JCLI-D-21-0204.1

Published

2024-06-28

Versions

Issue

Section

Artículos