Prediction of Evapotranspiration in the Pampean Plain from CERES Satellite Products and Machine Learning Techniques
DOI:
https://doi.org/10.24215/1850468Xe021Keywords:
evapotranspiration, CERES, teledetection, machine learningAbstract
A key aspect in agricultural zones, such as the Pampean Plain of Argentina, is to accurately estimate evapotranspiration rates to optimize crops and irrigation requirements and the floods and droughts prediction. In this sense, we evaluate six machine learning approaches to estimate the reference and actual evapotranspiration (ET0 and ETa) through CERES satellite products data. The results obtained applying machine learning techniques were compared with values obtained from ground-based information. After training and validating the algorithms, we observed that Support Vector machine-based Regressor (SVR) showed the best accuracy. Then, with an independent dataset, the calibrated SVR were tested. For predicting the reference evapotranspiration, we observed statistical errors of MAE = 0.437 mm d−1, and RMSE = 0.616 mm d−1, with a determination coefficient, R2, of 0.893. Regarding actual evapotranspiration modelling, we observed statistical errors of MAE = 0.422 mm d−1, and RMSE =0.599 mm d−1, with a R2 of 0.614. Comparing the results obtained with the machine learning models developed another studies in the same field, we understand that the results are promising and represent a baseline for future studies. Combining CERES data with information from other sources may generate more specific evapotranspiration products, considering the different land covers.
Downloads
References
Abbe, E., Bengio, S., Cornacchia, E., Kleinberg, J., Lotfi, A., Raghu, M., Zhang, C., 2022. Learning to Reason with Neural Networks: Generalization, Unseen Data and Boolean Measures (No. arXiv:2205.13647). arXiv. https://doi.org/10.48550/arXiv.2205.13647
Aliaga, V. S., Ferrelli, F., & Piccolo, M. C., 2017. Regionalization of climate over the Argentine Pampas. International Journal of Climatology, 37, 1237–1247.
Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop evapotranspiration: Guidelines for computing crop water requirements. Irrigation and Drainage Paper No 56. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy.
Allen, R.G., Pereira, L.S., Howell, T.A., Jensen, M.E., 2011. Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agric. Wat. Manag. 98 (6), 899–920. https://doi.org/10.1016/j.agwat.2010.12.015.
Bohn V., Rivas R., Varni M., Piccolo C., 2020. Using SPEI in predicting water table dynamics in Argentinian plains. Environmental Earth Sciences 79:469, doi.org/10.1007/s12665-020-09210-0
Breiman, L., 2001. Random Forests. Mach. Learn. 45, 5–32. https://doi.org/10.1023/A:1010933404324
Carmona, F., Holzman, M., Rivas, R., Degano, M.F., Kruse, E., Bayala, M., 2018. Evaluation of two models using CERES data for reference evapotranspiration estimation. Rev. de Teledet. 51, 87–98. https://doi.org/10.4995/raet.2018.9259.
Chen, Z., Shi, R., & Zhang, S., 2013. An artificial neural network approach to estimate evapotranspiration from remote sensing and AmeriFlux data. Frontiers of Earth Science, 7(1), 103–111. doi:10.1007/s11707-012-0346-7
Chen, T., Guestrin, C., 2016. Xgboost: A scalable tree boosting system, in: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining. pp. 785–794.
Chia, M. Y., Huang, Y. F., & Koo, C. H., 2020a. Support vector machine enhanced empirical reference evapotranspiration estimation with limited meteorological parameters. Computers and Electronics in Agriculture, 175, 105577. doi:10.1016/j.compag.2020.105577
Chai, T. and Draxler, R. R., 2014. Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature, Geosci. Model Dev., 7, 1247–1250, https://doi.org/10.5194/gmd-7-1247-2014.
Chia, M.Y., Huang, Y.F., Koo, C.H., & Fung, K.F., 2020b. Recent Advances in Evapotranspiration Estimation Using Artificial Intelligence Approaches with a Focus on Hybridization Techniques—A Review. Agronomy, 10(1), 101. doi:10.3390/agronomy10010101
da Silva Júnior, J.C., Medeiros, V., Garrozi, C., Montenegro, A., Gonçalves, G.E., 2019. Random forest techniques for spatial interpolation of evapotranspiration data from Brazilian's Northeast. Comput. Electron. Agric. 166, 105017. https://doi.org/10.1016/j.compag.2019.105017
Degano, M. F., Rivas, R. E., Carmona, F., Niclòs, R., & Sánchez, J. M., 2021. Evaluation of the MOD16A2 evapotranspiration product in an agricultural area of Argentina, the Pampas region. The Egyptian Journal of Remote Sensing and Space Science. 24(2), pp. 319–328. doi:10.1016/j.ejrs.2020.08.004
Degano, M.F., Rivas, R.E., Sánchez, J.M., Carmona, F., Niclòs, R., 2019. Assessment of the Potential Evapotranspiration MODIS Product Using Ground Measurements in the Pampas. In Proc. IEEE Congreso Bienal de Argentina, 2018, 1-5. Doi: 10.110 9/ARGENCON.2018.8646143
Fan, J., Wang, X., Wu, L., Zhou, H., Zhang, F., Yu, X., Lu, X., Xiang, Y., 2018. Comparison of Support Vector Machine and Extreme Gradient Boosting for predicting daily global solar radiation using temperature and precipitation in humid subtropical climates: A case study in China. Energy Convers. Manag. 164, 102–111. https://doi.org/10.1016/j.enconman.2018.02.087
Faramiñan, A., Rodriguez, P.O., Carmona, F., Holzman, M., Rivas, R., Mancino, C., 2022. Estimation of actual evapotranspiration in barley crop through a generalized linear model. MethodsX 101665. https://doi.org/10.1016/j.mex.2022.101665
Faramiñán, A.M.G., Degano, M.F., Carmona, F., Rodriguez, P.O., 2021. Estimation of actual evapotranspiration using NASA-POWER data and Support Vector Machine, in: 2021 XIX Workshop on Information Processing and Control (RPIC). XIX Workshop on Information Processing and Control (RPIC), pp. 1–5. https://doi.org/10.1109/RPIC53795.2021.9648425
Granata, F. Gargano, R., de Marinis, G., 2020. Artificial intelligence based approaches to evaluate actual evapotranspiration in wetlands. Science of The Total Environment, Vol. 703, 2020, 135653, ISSN 0048-9697, https://doi.org/10.1016/j.scitotenv.2019.135653.
Han, Y., Wu, J., Zhai, B., Pan, Y., Huang, G., Wu, L., Zeng, W., 2019. Coupling a Bat Algorithm with XGBoost to Estimate Reference Evapotranspiration in the Arid and Semiarid Regions of China. Adv. Meteorol. 2019, e9575782. https://doi.org/10.1155/2019/9575782
Izadifar, Z., Elshorbagy, A., 2010. Prediction of hourly actual evapotranspiration using neural networks, genetic programming, and statistical models. Hydrol. Process. 24, 3413–3425. https://doi.org/10.1002/hyp.7771
Jia, A., Jiang, B., Liang, S., Zhang, X., Ma, H., 2016. Validation and Spatiotemporal Analysis of CERES Surface Net Radiation Product. Remote Sens., 8, 90. https://doi.org/10.3390/rs8020090
Jing, W., Yaseen, Z.M., Shahid, S., Saggi, M.K., Tao, H., Kisi, O., Salih, S.Q., Al-Ansari, N., Chau, K.-W., 2019. Implementation of evolutionary computing models for reference evapotranspiration modeling: short review, assessment and possible future research directions. Eng. Appl. Comput. Fluid Mech. 13, 811–823.
Kisi, O., 2007. Evapotranspiration modelling from climatic data using a neural computing technique. Hydrol. Process. Int. J. 21, 1925–1934.
Kisi, O., 2008. The potential of different ANN techniques in evapotranspiration modelling. Hydrol. Process. 22, 2449–2460. https://doi.org/10.1002/hyp.6837
Kisi, O., Cimen, M., 2009. Evapotranspiration modelling using support vector machines. Hydrol. Sci. J.-J. Sci. Hydrol. 54.
Landeras, G., Ortiz-Barredo, A., López, J.J., 2008. Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain). Agric. Water Manag. 95, 553–565.
Lewis, C.S., & Allen, L.N., 2017. Potential crop evapotranspiration and surface evaporation estimates via a gridded weather forcing dataset. Journal of Hydrology, 546, 450–463. doi:10.1016/j.jhydrol.2016.11.055
Lu, X., Zhuang, Q., 2010. Evaluating evapotranspiration and water-use efficiency of terrestrial ecosystems in the conterminous United States using MODIS and AmeriFlux data. Remote Sensing of Environment, 114(9), 1924–1939. doi:10.1016/j.rse.2010.04.001
Marini, F., Santamaría, M., Oricchio, P., Di Bella, C.M., Bausaldo, A., 2017. Estimación de la evapotranspiración real (ETR) y de evapotranspiración potencial (ETP) en el sudoeste bonaerense (Argentina) a partir de imágenes MODIS. Revista de Teledetección, 48, 29-41. https://doi.org/10.4995/raet.2017.6743
Martens, B., de Jeu, R., Verhoest, N., Schuurmans, H., Kleijer, J., Miralles, D., 2018. Towards Estimating Land Evaporation at Field Scales Using GLEAM. Remote Sensing, 10(11), 1720. doi:10.3390/rs10111720
Miralles, D.G., Holmes, T.R.H., De Jeu, R.A.M., Gash, J.H., Meesters, A.G.C.A., Dolman, A.J., 2011. Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci., 15, 453–469.
Mu, Q.Z., Zhao, M.S., Running, SW, 2013. MODIS Global Terrestrial Evapotranspiration (ET) Product (NASA MOD16A2/A3). Algorithm Theoretical Basis Document. Collection 5. Numerical Terradynamic Simulation Group. College of Forestry and Conservation. University of Montana.
NASA/LARC/SD/ASDC (2017). CERES and GEO-Enhanced TOA, Within-Atmosphere and Surface Fluxes, Clouds and Aerosols Daily Terra-Aqua Edition4A [Data set]. NASA Langley Atmospheric Science Data Center DAAC. Retrieved from https://doi.org/10.5067/Terra+Aqua/CERES/SYN1degDay_L3.004A
Nema, M.K., Khare, D., & Chandniha, S.K., 2017. Application of artificial intelligence to estimate the reference evapotranspiration in sub-humid Doon valley. Applied Water Science, 7(7), 3903–3910. doi:10.1007/s13201-017-0543-3
Ochoa-Sánchez A, Crespo P, Carrillo-Rojas G, Sucozhañay A and Célleri R, 2019. Actual Evapotranspiration in the High Andean Grasslands: A Comparison of Measurement and Estimation Methods. Front. Earth Sci. 7:55. doi: 10.3389/feart.2019.00055
Ok, A.O., Akar, O., Gungor, O., 2012. Evaluation of random forest method for agricultural crop classification. Eur. J. Remote Sens. 45, 421–432. https://doi.org/10.5721/EuJRS20124535
Putatunda, S., Rama, K., 2018. A Comparative Analysis of Hyperopt as Against Other Approaches for Hyper-Parameter Optimization of XGBoost, in: Proceedings of the 2018 International Conference on Signal Processing and Machine Learning - SPML '18. Presented at the the 2018 International Conference, ACM Press, Shanghai, China, pp. 6–10. https://doi.org/10.1145/3297067.3297080
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, É., 2011. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12(85):2825−2830, 2011.
Rivas, R., Caselles, V., 2004. A simplified equation to estimate spatial reference evaporation from remote sensing-based surface temperature and local meteorological data. Remote Sens. Environ. 93, 68–76.
Rivas, R.E., Carmona, F. 2013. Evapotranspiration in the Pampean Region using field measurements and satellite data. Physics and Chemistry of the Earth, Parts A/B/C, 55-57, 27-34. https://doi.org/10.1016/j.pce.2010.12.002
Rutan, D.A., S. Kato, D.R. Doelling, F.G. Rose, L.T. Nguyen, T.E. Caldwell, and NG. Loeb, 2015: CERES synoptic product: Methodology and validation of surface radiant flux. J. Atmos. Oceanic Technol., 32, 1121–1143, doi:10.1175/ JTECH-D-14-00165.1.
Smith, G., Priestley, K., Loeb, N., Wielicki, B., Charlock, T., Minnis, P., Doelling, D., Rutan, D., 2011. Clouds and Earth Radiant Energy System (CERES), a review: Past, present and future. Adv. Space Res., 48, 254–263.
Teyseyre, A., Carmona, F., Holzman, M., Rodriguez, J.M., Schiaffino, S., Rivas, R, Godoy, D., 2021. Evaluating machine learning approaches for evapotranspiration estimation in the Pampean region of Argentina. IEEE Congreso Bienal de Argentina, 2020, pp. 1-7, doi: 10.1109/ARGENCON49523.2020.9505501.
Walker, E., García, G.A.; Venturini, V., 2018. Actual evapotranspiration estimation over flat lands using soil moisture products from SMAP mission. Revista de Teledetección, n. 52, p. 17-26. ISSN 1988-8740. doi:https://doi.org/10.4995/raet.2018.10566.
Xiang, K., Li, Y., Horton, R., & Feng, H., 2020. Similarity and difference of potential evapotranspiration and reference crop evapotranspiration – a review. Agricultural Water Management, 232, 106043. doi:10.1016/j.agwat.2020.106043
Yang, F., White, M.A. Michaelis, A.R., Ichii, K., Hashimoto, H., Votava, P., Zhu, A-X, Nemani, RR, 2006. Prediction of Continental-Scale Evapotranspiration by Combining MODIS and AmeriFlux Data Through Support Vector Machine. IEEE Transactions on Geoscience and Remote Sensing, vol. 44, no. 11, pp. 3452-3461. doi:10.1109/TGRS.2006.876297.
Yamaç, S.S., Todorovic, M., 2020. Estimation of daily potato crop evapotranspiration using three different machine learning algorithms and four scenarios of available meteorological data. Agric. Water Manag. 228, 105875. https://doi.org/10.1016/j.agwat.2019.105875
Zhang, Z., Gong, Y., & Wang, Z., 2018. Accessible remote sensing data based reference evapotranspiration estimation modelling. Agricultural Water Management, 210, 59–69. doi:10.1016/j.agwat.2018.07.039
Downloads
Additional Files
Published
Issue
Section
License
Copyright (c) 2023 Facundo Carmona, Ad´an Farami˜n´an, Ra´ul Rivas, Facundo Orte
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
According to these terms, the material may be shared (copied and redistributed in any medium or format) and adapted (remixed, transformed and created from the material another work), provided that a) the authorship and the original source of publication (journal and URL of the work) are cited, b) it is not used for commercial purposes and c) the same terms of the license are maintained.