Evaluación del método de análogos para la simulación de la precipitación diaria en una región de orografía compleja
DOI:
https://doi.org/10.24215/1850468Xe031Palabras clave:
ERA-Interim, downscaling estadístico, Andes centrales, Argentina, ChileResumen
Los Modelos Climáticos Globales (GCM) son la principal herramienta disponible para realizar predicciones sobre el clima en escenarios futuros, sin embargo, los mismos presentan un desempeño bajo para reproducir el clima local debido a su resolución espacial limitada. Esta característica se acentúa en regiones de orografía compleja. En el presente trabajo, se exploró la posibilidad de añadir valor agregado al modelado de la precipitación diaria a través de un método estadístico de reducción de escala (downscaling) en la región de los Andes Centrales. Se utilizó la precipitación diaria de 83 estaciones de la región durante el periodo 1981-2015 para calibrar el método de análogos utilizando el reanálisis ERA-Interim. Las series construidas a partir de los modelos de downscaling estadístico mostraron resultados más fidedignos en comparación con datos crudos del reanálisis, especialmente en el cálculo de valores medios y de estadísticos de escala diaria. En líneas generales, los modelos basados en la información de predictores atmosféricos locales obtuvieron un mejor desempeño que los constituidos utilizando la información de gran escala simplificada en base a un análisis de componentes principales. El desempeño de los modelos de downscaling a lo largo del dominio no fue uniforme, obteniéndose mejores resultados en las estaciones chilenas del sector sur. Esto posiblemente fue debido a que el forzante sinóptico dominante es bien capturado por los modelos de downscaling. Los distintos aspectos temporales de la variabilidad de la precipitación (intraanual, interanual y tendencias de largo plazo) fueron hábilmente reproducidos por los modelos estadísticos.
Descargas
Citas
Aniley, E.; Gashaw, T.; Abraham, T.; Demessie, S.F.; Bayabil, H.K.; Worqlul, A.W.; van Oel, P.R.; Dile, Y.T.; Chukalla, A.D.; Haileslassie A.; Wubaye, G.B.; 2023: Evaluating the performances of gridded satellite/reanalysis products in representing the rainfall climatology of Ethiopia, Geocarto International, 38:1, 2278329. https://doi.org/10.1080/10106049.2023.2278329
Araneo, D. C., Compagnucci, R. H.; 2008: Atmospheric circulation features associated to Argentinean Andean rivers discharge variability, Geophys. Res. Lett., 35, L01805. https://doi.org/10.1029/2007GL032427
Araneo, D.; Villalba, R.; 2014: Variability in the annual cycle of the Río Atuel streamflows and its relationship with tropospheric circulation, Int. J. Climatol. https://doi.org/10.1002/joc.4185
Araya-Osses, D.; Casanueva, A.; Román-Figueroa, C.; Uribe, J.M.; Paneque, M.; 2020: Climate change projections of temperature and precipitation in Chile based on statistical downscaling, Climate Dynamics (2020) 54:4309–4330. https://doi.org/10.1007/s00382-020-05231-4
Balmaceda-Huarte, R.; Olmo, M.E.; Bettolli, M.L.; Poggi, M.M.; 2021: Evaluation of multiple reanalyses in reproducing the spatio-temporal variability of temperature and precipitation indices over southern South America. Int J Climatol. 41, 5572–5595. https://doi.org/10.1002/joc.7142
Balmaceda-Huarte, R.; Bettolli, M.L.; 2022: Assessing statistical downscaling in Argentina: Daily maximum and minimum temperatures, Int J Climatol. 2022;42:8423–8445. https://doi.org/10.1002/joc.7733
Basist, A., Bell, G.D., Meentemeyer, V., 1994: Statistical Relationships between Topography and Precipitation Patterns, Journal of Climate 7:1305-1315.
Bedía, J., Baño-Medina, J., Legasa, M.N., Iturbide, M., Manzanas, R., Herrera, S., Casanueva, A., San-Martín, D., Cofiño, A.S., Gutiérrez, J.M., 2019: Statistical downscaling with the downscaleR package: Contribution to the VALUE intercomparison experiment. https://doi.org/10.5194/gmd-2019-224.
Bettolli, M.L. y Penalba, O.C., 2018: Statistical downscaling of daily precipitation and temperatures in southern La Plata Basin, International Journal of Climatology 2018:1-18. https://doi.org/10.1002/joc.5531
Boisier, J.P.; Alvarez-Garreton, C.; Cordero, R.; Damiani, A.; Gallardo, L.; Garreaud, R.D.; Lambert, F.; Ramallo, C.; Rojas, M.; Rondanelli, R.; 2018: Anthropogenic drying in central-southern Chile evidenced by long-term observations and climate model simulations, Elem Sci Anth, 6: 74. https://doi.org/10.1525/elementa.328
Bonelli, S.; Vicuña, S.; Meza, F.J.; Gironás, J.; Barton, J.; 2014: Incorporating climate change adaptation strategies in urban water supply planning: the case of central Chile, Journal of Water and Climate Change 05.3:357-376. https://doi.org/10.2166/wcc.2014.037
Bozkurt, D.; Rojas, M.; Boisier, J.P.; Valdivieso, J.; 2018: Projected hydroclimate changes over Andean basins in central Chile from downscaled CMIP5 models under the low and high emission scenarios, Climatic Change (2018) 150:131–147. https://doi.org/10.1007/s10584-018-2246-7
Bravo, C.; Loriaux, T.; Rivera, A.; Brock, B. W.; 2017: Assessing glacier melt contribution to streamflow at Universidad Glacier, central Andes of Chile, Hydrol. Earth Syst. Sci., 21, 3249–3266. https://doi.org/10.5194/hess-21-3249-2017
Chen, D. y Dai, A.; 2019: Precipitation Characteristics in the Community Atmosphere Model and Their Dependence on Model Physics and Resolution, Journal of Advances in Modeling Earth Systems, 11, 2352–2374. https://doi.org/10.1029/2018MS001536
Dee, DP; Uppala, SM; Simmons, AJ; Berrisford, P; Poli, P; Kobayashi, S; Andrae, U; Balmaseda, MA; Balsamo, G; Bauer, P; Bechtold, P; Beljaars, ACM; van de Berg, L; Bidlot, J; Bormann, N; Delsol, C; Dragani, R; Fuentes, M; Geer, AJ; Haimberger, L; Healy, SB; Hersbach, H; Hólm, EV; Isaksen, L; Kållberg, P; Köhler, M; Matricardi, M; McNally, AP; Monge-Sanz, BM; Morcrette, JJ; Park, BK; Peubey, C; de Rosnay, P; Tavolato, C; Thépaut, JN; Vitart, F; 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J Roy Meteorol Soc 137:553–597. https://doi.org/10.1002/qj.828
Falvey, M., Garreaud, R., 2007: Wintertime Precipitation Episodes in Central Chile: Associated Meteorological Conditions and Orographic Influences, Journal of Hidrometeorology 8:171-193. https://doi.org/10.1175/JHM562.1
Fuentealba, M.; Bahamóndez, C.; Sarricolea, P.; Meseguer-Ruiz, O.; Latorre, C.; 2021: The 2010–2020 ’megadrought’ drives reduction in lake surface area in the Andes of central Chile (32° - 36°S), Journal of Hydrology: Regional Studies 38. https://doi.org/10.1016/j.ejrh.2021.100952
Garreaud R.D., 2009: The Andes climate and weather, Advances in Geosciences 7:1-9. https://doi.org/10.5194/adgeo-22-3-2009
Garreaud, R.; Álvarez-Garreton, C.; Barichivich, J.; Boisier, J.P.; Christie, D.; Galleguillos, M.; LeQuesne, C.; McPhee, J.; Zambrano-Bigiarini, M.; 2017: The 2010–2015 megadrought in central Chile: impacts on regional hydroclimate and vegetation, Hydrol. Earth Syst. Sci., 21, 6307–6327, 2017. https://doi.org/10.5194/hess-21-6307-2017
Garreaud, R.D; Boisier, J.P.; Rondanelli, R.; Montecinos, A.; Sepúlveda, H.; Veloso-Aguila, D.; 2019: The Central Chile Mega Drought (2010–2018): A climate dynamics perspective, Int J Climatol. 2020;40:421–439. https://doi.org/10.1002/joc.6219
Gutowski, J.W.; Giorgi, F.; Timbal, B.; Frigon, A.; Jacob, D.; Kang, H.S.; Raghavan, K.; Lee, B.; Lennard, C.; Nikulin, G.; O’Rourke, E.; Rixen, M.; Solman, S.; Stephenson, T.; Tangang, F.; 2016: WCRP COordinated Regional Downscaling EXperiment (CORDEX): a diagnostic MIP for CMIP6. Geosci Model Dev 9(11):4087–4095. https://doi.org/10.5194/gmd-9-4087-2016
Horton, P.; Brönnimann, S.; 2018: Impact of global atmospheric reanalyses on statistical precipitation downscaling, Climate Dynamics. https://doi.org/10.1007/s00382-018-4442-6
Horton, P.; 2021: Analogue methods and ERA5: Benefits and pitfalls, Int J Climatol. 2022;42:4078–4096. https://doi.org/10.1002/joc.7484
INDEC, 2022: Censo nacional de población, hogares y viviendas 2022: resultados provisionales / 1a ed.
Instituto Nacional de Estadísticas, 2018: Síntesis de Resultados Censo 2017 de Chile. https://www.ine.gob.cl/estadisticas/sociales/censos-de-poblacion-y-vivienda/censo-de-poblacion-y-vivienda
Labraga, J.C., 2010: Statistical downscaling estimation of recent rainfall trends, in the eastern slope of the Andes mountain range in Argentina, Theorical and Applicated Climatology 99,287–302. https://doi.org/10.1007/s00704-009-0145-6
Maraun, D.; Huth, ,R.; Gutiérrez, J.M.; San Martín, D.; Dubrovsky, M.; Fischer, A.; Hertig, E.; Soares, P.M.M.; Bartholy, J.; Pongrácz, R.; Widmann, M.; Casado, M.J.; Ramos, P.; Bedia, J.; 2019: The VALUE perfect predictor experiment: Evaluation of temporal variability, Int. J. Climatol. 2017;1–33. https://doi.org/10.1002/joc.5222
Montecinos, A., Díaz, A., Aceituno, P., 2000: Seasonal Diagnostic and Predictability of Rainfall in Subtropical South America Based on Tropical Pacific SST, Journal of Climate 13:746-758. https://doi.org/10.1175/1520-0442(2000)013⟨0746:SDAPOR⟩2.0.CO;2
Müller, G. y Lovino, M.; 2023: Variability and Changes in Temperature, Precipitation and Snow in the Desaguadero-Salado-Chadileuvú-Curacó Basin, Argentina, Climate 2023, 11, 135. https://doi.org/10.3390/cli11070135
Mutz, S.; Scherrer, S.; Muceniece, I.; Ehlers, T.; 2021: Twenty‐first century regional temperature response in Chile based on empirical‐statistical downscaling, Climate Dynamics (2021) 56:2881–2894. https://doi.org/10.1007/s00382-020-05620-9
Navarro-Racines, C.; Tarapues, J.; Thornton, P.; Jarvis, A.; Ramirez-Villegas, J.; 2020: High-resolution and bias-corrected CMIP5 projections for climate change impact assessments, Scientific Data (2020) 7:7. https://doi.org/10.1038/s41597-019-0343-8
Olmo, M., Bettolli M.L., 2021: Statistical downscaling of daily precipitation over southeastern South America: assessing the performance in extreme events, International Journal of Climatology 42(2),1283–1302. https://doi.org/10.1002/joc.7303
Penalba, O. y Vargas, W.; 2004: Interdecadal and Interannual Variations of Annual and Extreme Precipitation over Central-Northeastern Argentina, Int. J. Climatol. 24: 1565–1580 (2004). https://doi.org/10.1002/joc.1069
Rivera, J.A.; Araneo, D.; Penalba, O.; 2017: Threshold level approach for streamflow drought analysis in the Central Andes of Argentina: a climatological assessment, Hydrological Sciences Journal, 62:12, 1949-1964. https://doi.org/10.1080/02626667.2017.1367095
Singh, V.P., Lee, T., 2018: Statistical Downscaling for Hydrological and Environmental Applications, 181 págs. https://doi.org/10.1201/9780429459580
Timbal, B., Dufour, A., McAvaney, B., 2004: An estimate of future climate change for western France using a statistical downscaling technique. Climate Dynamics, 20, 807–823. http://dx.doi.org/10.1007/s00382-002-0298-9
Viale, M., Garreaud, R., 2014: Summer Precipitation Events over the Western Slope of the Subtropical Andes, Monthly Weather Review 142:1074-1092. https://doi.org/10.1175/MWR-D-13-00259.1
Viale, M., Nuñez, M.N., 2011: Climatology of Winter Orographic Precipitation over the Subtropical Central Andes and Associated Synoptic and Regional Characteristics, Journal of Hydrometeorology 12:481-507. https://doi.org/10.1175/2010JHM1284.1
Wilby, R.L., Dawson, C.W., Barrow, E.M., 2002: SDSM — a decision support tool for the assessment of regional climate change impacts, Environmental Modelling & Software 17:147–159. https://doi.org/10.101 6/S1364-8152(01)00060-3
Wilks, D.S., 1995: Statistical Methods in the Atmospheric Sciences. Academic Press, San Diego, 467 págs.
Wold, S., Esbensen, K., Geladi, P., 1987: Principal Component Analysis, Chemometrics and Intelligent Laboratory Systems 2:37-52. https://doi.org/10.1016/0169-7439(87)80084-9
Zazulie, N.; Rusticucci, M.; Raga, G.; 2017: Regional climate of the subtropical central Andes using high-resolution CMIP5 models—part I: past performance (1980–2005), Clim Dyn (2017) 49:3937–3957. https://doi.org/10.1007/s00382-017-3560-x
Zorita, E., von Storch, H., 1999: The Analog Method as a Simple Statistical Downscaling Technique: Comparison with More Complicated Methods, Journal of Climate 12:2474-2489. https://doi.org/10.1175/1520- 0442(1999)012%3C2474:TAMAAS%3E2.0.CO;2
Descargas
Archivos adicionales
Publicado
Versiones
- 14-11-2024 (2)
- 28-06-2024 (1)
Número
Sección
Licencia
Derechos de autor 2024 Federico Gomez, María Laura Bettolli
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Acorde a estos términos, el material se puede compartir (copiar y redistribuir en cualquier medio o formato) y adaptar (remezclar, transformar y crear a partir del material otra obra), siempre que a) se cite la autoría y la fuente original de su publicación (revista y URL de la obra), b) no se use para fines comerciales y c) se mantengan los mismos términos de la licencia.