Predicción de la evapotranspiración en la región pampeana por medio de datos CERES y técnicas de aprendizaje automático
DOI:
https://doi.org/10.24215/1850468Xe021Palabras clave:
evapotranspiraci´on, aprendizaje autom´atico, CERES, teledetecci´onResumen
Un aspecto clave en zonas agrícolas, como la llanura Pampeana argentina, es poder estimar con precisión las tasas de evapotranspiración para optimizar cultivos y requerimientos de riego, como así también la predicción de inundaciones y sequías. En este sentido, se evaluaron seis algoritmos de aprendizaje automático para estimar la evapotranspiraci´on de referencia y la evapotranspiración real (ET0 y ETa, respectivamente) utilizando productos de satélite CERES como datos de entrada. Los valores modelados, aplicando técnicas de aprendizaje automático, se compararon con aquellos obtenidos a partir de información de terreno. Después de entrenar y validar los algoritmos, observamos que el Regresor con Vectores de Soporte (SVR) mostraba la mejor precisión. A continuación, con un conjunto de datos independiente, se testearon los algoritmos SVR calibrados. Para la predicción de la evapotranspiración de referencia se observaron errores estadÍsticos de MAE =0.437 mm d−1 y RMSE = 0.616 mm d−1, con un coeficiente de determinación R2= 0.893. Por otro lado, al predecir la evapotranspiración real, observamos errores estadísticos de MAE y RMSE de 0.422 mm d−1 y 0.599 mm d−1, respectivamente, con un R2 de 0.614. Al comparar los resultados obtenidos con los algoritmos de aprendizaje automático con aquellos arrojados por estudios en la misma área, entendemos que los resultados aquí mostrados son prometedores y representan una l´ınea de base para futuros trabajos. La combinación de datos de CERES con información de otras fuentes puede generar productos de evapotranspiración más específicos, considerando además las diferentes coberturas del suelo.
Descargas
Citas
Abbe, E., Bengio, S., Cornacchia, E., Kleinberg, J., Lotfi, A., Raghu, M., Zhang, C., 2022. Learning to Reason with Neural Networks: Generalization, Unseen Data and Boolean Measures (No. arXiv:2205.13647). arXiv. https://doi.org/10.48550/arXiv.2205.13647
Aliaga, V. S., Ferrelli, F., & Piccolo, M. C., 2017. Regionalization of climate over the Argentine Pampas. International Journal of Climatology, 37, 1237–1247.
Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop evapotranspiration: Guidelines for computing crop water requirements. Irrigation and Drainage Paper No 56. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy.
Allen, R.G., Pereira, L.S., Howell, T.A., Jensen, M.E., 2011. Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agric. Wat. Manag. 98 (6), 899–920. https://doi.org/10.1016/j.agwat.2010.12.015.
Bohn V., Rivas R., Varni M., Piccolo C., 2020. Using SPEI in predicting water table dynamics in Argentinian plains. Environmental Earth Sciences 79:469, doi.org/10.1007/s12665-020-09210-0
Breiman, L., 2001. Random Forests. Mach. Learn. 45, 5–32. https://doi.org/10.1023/A:1010933404324
Carmona, F., Holzman, M., Rivas, R., Degano, M.F., Kruse, E., Bayala, M., 2018. Evaluation of two models using CERES data for reference evapotranspiration estimation. Rev. de Teledet. 51, 87–98. https://doi.org/10.4995/raet.2018.9259.
Chen, Z., Shi, R., & Zhang, S., 2013. An artificial neural network approach to estimate evapotranspiration from remote sensing and AmeriFlux data. Frontiers of Earth Science, 7(1), 103–111. doi:10.1007/s11707-012-0346-7
Chen, T., Guestrin, C., 2016. Xgboost: A scalable tree boosting system, in: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining. pp. 785–794.
Chia, M. Y., Huang, Y. F., & Koo, C. H., 2020a. Support vector machine enhanced empirical reference evapotranspiration estimation with limited meteorological parameters. Computers and Electronics in Agriculture, 175, 105577. doi:10.1016/j.compag.2020.105577
Chai, T. and Draxler, R. R., 2014. Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature, Geosci. Model Dev., 7, 1247–1250, https://doi.org/10.5194/gmd-7-1247-2014.
Chia, M.Y., Huang, Y.F., Koo, C.H., & Fung, K.F., 2020b. Recent Advances in Evapotranspiration Estimation Using Artificial Intelligence Approaches with a Focus on Hybridization Techniques—A Review. Agronomy, 10(1), 101. doi:10.3390/agronomy10010101
da Silva Júnior, J.C., Medeiros, V., Garrozi, C., Montenegro, A., Gonçalves, G.E., 2019. Random forest techniques for spatial interpolation of evapotranspiration data from Brazilian's Northeast. Comput. Electron. Agric. 166, 105017. https://doi.org/10.1016/j.compag.2019.105017
Degano, M. F., Rivas, R. E., Carmona, F., Niclòs, R., & Sánchez, J. M., 2021. Evaluation of the MOD16A2 evapotranspiration product in an agricultural area of Argentina, the Pampas region. The Egyptian Journal of Remote Sensing and Space Science. 24(2), pp. 319–328. doi:10.1016/j.ejrs.2020.08.004
Degano, M.F., Rivas, R.E., Sánchez, J.M., Carmona, F., Niclòs, R., 2019. Assessment of the Potential Evapotranspiration MODIS Product Using Ground Measurements in the Pampas. In Proc. IEEE Congreso Bienal de Argentina, 2018, 1-5. Doi: 10.110 9/ARGENCON.2018.8646143
Fan, J., Wang, X., Wu, L., Zhou, H., Zhang, F., Yu, X., Lu, X., Xiang, Y., 2018. Comparison of Support Vector Machine and Extreme Gradient Boosting for predicting daily global solar radiation using temperature and precipitation in humid subtropical climates: A case study in China. Energy Convers. Manag. 164, 102–111. https://doi.org/10.1016/j.enconman.2018.02.087
Faramiñan, A., Rodriguez, P.O., Carmona, F., Holzman, M., Rivas, R., Mancino, C., 2022. Estimation of actual evapotranspiration in barley crop through a generalized linear model. MethodsX 101665. https://doi.org/10.1016/j.mex.2022.101665
Faramiñán, A.M.G., Degano, M.F., Carmona, F., Rodriguez, P.O., 2021. Estimation of actual evapotranspiration using NASA-POWER data and Support Vector Machine, in: 2021 XIX Workshop on Information Processing and Control (RPIC). XIX Workshop on Information Processing and Control (RPIC), pp. 1–5. https://doi.org/10.1109/RPIC53795.2021.9648425
Granata, F. Gargano, R., de Marinis, G., 2020. Artificial intelligence based approaches to evaluate actual evapotranspiration in wetlands. Science of The Total Environment, Vol. 703, 2020, 135653, ISSN 0048-9697, https://doi.org/10.1016/j.scitotenv.2019.135653.
Han, Y., Wu, J., Zhai, B., Pan, Y., Huang, G., Wu, L., Zeng, W., 2019. Coupling a Bat Algorithm with XGBoost to Estimate Reference Evapotranspiration in the Arid and Semiarid Regions of China. Adv. Meteorol. 2019, e9575782. https://doi.org/10.1155/2019/9575782
Izadifar, Z., Elshorbagy, A., 2010. Prediction of hourly actual evapotranspiration using neural networks, genetic programming, and statistical models. Hydrol. Process. 24, 3413–3425. https://doi.org/10.1002/hyp.7771
Jia, A., Jiang, B., Liang, S., Zhang, X., Ma, H., 2016. Validation and Spatiotemporal Analysis of CERES Surface Net Radiation Product. Remote Sens., 8, 90. https://doi.org/10.3390/rs8020090
Jing, W., Yaseen, Z.M., Shahid, S., Saggi, M.K., Tao, H., Kisi, O., Salih, S.Q., Al-Ansari, N., Chau, K.-W., 2019. Implementation of evolutionary computing models for reference evapotranspiration modeling: short review, assessment and possible future research directions. Eng. Appl. Comput. Fluid Mech. 13, 811–823.
Kisi, O., 2007. Evapotranspiration modelling from climatic data using a neural computing technique. Hydrol. Process. Int. J. 21, 1925–1934.
Kisi, O., 2008. The potential of different ANN techniques in evapotranspiration modelling. Hydrol. Process. 22, 2449–2460. https://doi.org/10.1002/hyp.6837
Kisi, O., Cimen, M., 2009. Evapotranspiration modelling using support vector machines. Hydrol. Sci. J.-J. Sci. Hydrol. 54.
Landeras, G., Ortiz-Barredo, A., López, J.J., 2008. Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain). Agric. Water Manag. 95, 553–565.
Lewis, C.S., & Allen, L.N., 2017. Potential crop evapotranspiration and surface evaporation estimates via a gridded weather forcing dataset. Journal of Hydrology, 546, 450–463. doi:10.1016/j.jhydrol.2016.11.055
Lu, X., Zhuang, Q., 2010. Evaluating evapotranspiration and water-use efficiency of terrestrial ecosystems in the conterminous United States using MODIS and AmeriFlux data. Remote Sensing of Environment, 114(9), 1924–1939. doi:10.1016/j.rse.2010.04.001
Marini, F., Santamaría, M., Oricchio, P., Di Bella, C.M., Bausaldo, A., 2017. Estimación de la evapotranspiración real (ETR) y de evapotranspiración potencial (ETP) en el sudoeste bonaerense (Argentina) a partir de imágenes MODIS. Revista de Teledetección, 48, 29-41. https://doi.org/10.4995/raet.2017.6743
Martens, B., de Jeu, R., Verhoest, N., Schuurmans, H., Kleijer, J., Miralles, D., 2018. Towards Estimating Land Evaporation at Field Scales Using GLEAM. Remote Sensing, 10(11), 1720. doi:10.3390/rs10111720
Miralles, D.G., Holmes, T.R.H., De Jeu, R.A.M., Gash, J.H., Meesters, A.G.C.A., Dolman, A.J., 2011. Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci., 15, 453–469.
Mu, Q.Z., Zhao, M.S., Running, SW, 2013. MODIS Global Terrestrial Evapotranspiration (ET) Product (NASA MOD16A2/A3). Algorithm Theoretical Basis Document. Collection 5. Numerical Terradynamic Simulation Group. College of Forestry and Conservation. University of Montana.
NASA/LARC/SD/ASDC (2017). CERES and GEO-Enhanced TOA, Within-Atmosphere and Surface Fluxes, Clouds and Aerosols Daily Terra-Aqua Edition4A [Data set]. NASA Langley Atmospheric Science Data Center DAAC. Retrieved from https://doi.org/10.5067/Terra+Aqua/CERES/SYN1degDay_L3.004A
Nema, M.K., Khare, D., & Chandniha, S.K., 2017. Application of artificial intelligence to estimate the reference evapotranspiration in sub-humid Doon valley. Applied Water Science, 7(7), 3903–3910. doi:10.1007/s13201-017-0543-3
Ochoa-Sánchez A, Crespo P, Carrillo-Rojas G, Sucozhañay A and Célleri R, 2019. Actual Evapotranspiration in the High Andean Grasslands: A Comparison of Measurement and Estimation Methods. Front. Earth Sci. 7:55. doi: 10.3389/feart.2019.00055
Ok, A.O., Akar, O., Gungor, O., 2012. Evaluation of random forest method for agricultural crop classification. Eur. J. Remote Sens. 45, 421–432. https://doi.org/10.5721/EuJRS20124535
Putatunda, S., Rama, K., 2018. A Comparative Analysis of Hyperopt as Against Other Approaches for Hyper-Parameter Optimization of XGBoost, in: Proceedings of the 2018 International Conference on Signal Processing and Machine Learning - SPML '18. Presented at the the 2018 International Conference, ACM Press, Shanghai, China, pp. 6–10. https://doi.org/10.1145/3297067.3297080
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, É., 2011. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12(85):2825−2830, 2011.
Rivas, R., Caselles, V., 2004. A simplified equation to estimate spatial reference evaporation from remote sensing-based surface temperature and local meteorological data. Remote Sens. Environ. 93, 68–76.
Rivas, R.E., Carmona, F. 2013. Evapotranspiration in the Pampean Region using field measurements and satellite data. Physics and Chemistry of the Earth, Parts A/B/C, 55-57, 27-34. https://doi.org/10.1016/j.pce.2010.12.002
Rutan, D.A., S. Kato, D.R. Doelling, F.G. Rose, L.T. Nguyen, T.E. Caldwell, and NG. Loeb, 2015: CERES synoptic product: Methodology and validation of surface radiant flux. J. Atmos. Oceanic Technol., 32, 1121–1143, doi:10.1175/ JTECH-D-14-00165.1.
Smith, G., Priestley, K., Loeb, N., Wielicki, B., Charlock, T., Minnis, P., Doelling, D., Rutan, D., 2011. Clouds and Earth Radiant Energy System (CERES), a review: Past, present and future. Adv. Space Res., 48, 254–263.
Teyseyre, A., Carmona, F., Holzman, M., Rodriguez, J.M., Schiaffino, S., Rivas, R, Godoy, D., 2021. Evaluating machine learning approaches for evapotranspiration estimation in the Pampean region of Argentina. IEEE Congreso Bienal de Argentina, 2020, pp. 1-7, doi: 10.1109/ARGENCON49523.2020.9505501.
Walker, E., García, G.A.; Venturini, V., 2018. Actual evapotranspiration estimation over flat lands using soil moisture products from SMAP mission. Revista de Teledetección, n. 52, p. 17-26. ISSN 1988-8740. doi:https://doi.org/10.4995/raet.2018.10566.
Xiang, K., Li, Y., Horton, R., & Feng, H., 2020. Similarity and difference of potential evapotranspiration and reference crop evapotranspiration – a review. Agricultural Water Management, 232, 106043. doi:10.1016/j.agwat.2020.106043
Yang, F., White, M.A. Michaelis, A.R., Ichii, K., Hashimoto, H., Votava, P., Zhu, A-X, Nemani, RR, 2006. Prediction of Continental-Scale Evapotranspiration by Combining MODIS and AmeriFlux Data Through Support Vector Machine. IEEE Transactions on Geoscience and Remote Sensing, vol. 44, no. 11, pp. 3452-3461. doi:10.1109/TGRS.2006.876297.
Yamaç, S.S., Todorovic, M., 2020. Estimation of daily potato crop evapotranspiration using three different machine learning algorithms and four scenarios of available meteorological data. Agric. Water Manag. 228, 105875. https://doi.org/10.1016/j.agwat.2019.105875
Zhang, Z., Gong, Y., & Wang, Z., 2018. Accessible remote sensing data based reference evapotranspiration estimation modelling. Agricultural Water Management, 210, 59–69. doi:10.1016/j.agwat.2018.07.039
Descargas
Archivos adicionales
Publicado
Número
Sección
Licencia
Derechos de autor 2023 Facundo Carmona, Ad´an Farami˜n´an, Ra´ul Rivas, Facundo Orte
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Acorde a estos términos, el material se puede compartir (copiar y redistribuir en cualquier medio o formato) y adaptar (remezclar, transformar y crear a partir del material otra obra), siempre que a) se cite la autoría y la fuente original de su publicación (revista y URL de la obra), b) no se use para fines comerciales y c) se mantengan los mismos términos de la licencia.