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ABSTRACT

A key aspect in agricultural zones, such as the Pampean Plain of Argentina,
is to accurately estimate evapotranspiration rates to optimize crops and
irrigation requirements and the floods and droughts prediction. In this sense,
we evaluate six machine learning approaches to estimate the reference and
actual evapotranspiration (ET0 and ETa) through CERES satellite products data.
The results obtained applying machine learning techniques were compared with
values obtained from ground-based information. After training and validating the
algorithms, we observed that Support Vector machine-based Regressor (SVR)
showed the best accuracy. Then, with an independent dataset, the calibrated
SVR were tested. For predicting the reference evapotranspiration, we observed
statistical errors of MAE = 0.437 mm d−1, and RMSE = 0.616 mm d−1, with
a determination coefficient, R2, of 0.893. Regarding actual evapotranspiration
modelling, we observed statistical errors of MAE = 0.422 mm d−1, and RMSE =
0.599 mm d−1, with a R2 of 0.614. Comparing the results obtained with the machine
learning models developed another studies in the same field, we understand that
the results are promising and represent a baseline for future studies. Combining
CERES data with information from other sources may generate more specific
evapotranspiration products, considering the different land covers.
Keywords: Evapotranspiration, CERES, Machine Learning, Teledetection.

PREDICCIÓN DE LA EVAPOTRANSPIRACIÓN EN LA REGIÓN PAMPEANA
POR MEDIO DE DATOS CERES Y TÉCNICAS DE APRENDIZAJE

AUTOMÁTICO

RESUMEN

Un aspecto clave en zonas agŕıcolas, como la llanura Pampeana argentina, es poder
estimar con precisión las tasas de evapotranspiración para optimizar cultivos y
requerimientos de riego, como aśı también la predicción de inundaciones y seqúıas.
En este sentido, se evaluaron seis algoritmos de aprendizaje automático para
estimar la evapotranspiración de referencia y la evapotranspiración real (ET0 y
ETa, respectivamente) utilizando productos de satélite CERES como datos de
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entrada. Los valores modelados, aplicando técnicas de aprendizaje automático, se
compararon con aquellos obtenidos a partir de información de terreno. Después
de entrenar y validar los algoritmos, observamos que el Regresor con Vectores de
Soporte (SVR) mostraba la mejor precisión. A continuación, con un conjunto de
datos independiente, se testearon los algoritmos SVR calibrados. Para la predicción
de la evapotranspiración de referencia se observaron errores estad́ısticos de MAE =
0.437 mm d−1 y RMSE = 0.616 mm d−1, con un coeficiente de determinación R2

= 0.893. Por otro lado, al predecir la evapotranspiración real, observamos errores
estad́ısticos de MAE y RMSE de 0.422 mm d−1 y 0.599 mm d−1, respectivamente,
con un R2 de 0.614. Al comparar los resultados obtenidos con los algoritmos de
aprendizaje automático con aquellos arrojados por estudios en la misma área,
entendemos que los resultados aqúı mostrados son prometedores y representan
una ĺınea de base para futuros trabajos. La combinación de datos de CERES con
información de otras fuentes puede generar productos de evapotranspiración más
espećıficos, considerando además las diferentes coberturas del suelo.
Palabras clave: Evapotranspiración, Aprendizaje Automático, CERES,
Teledetección.

1. INTRODUCTION

Climate change alters the complex interplay
between land and atmosphere, significantly
impacting different processes in the global
hydrological cycle (Martens et al., 2018).
Evapotranspiration (ET) is a significant
component of the hydrological cycle and one
of the most important physical processes in
natural ecosystems. It explains the exchange
of water and energy between the soil, land
surface, and the atmosphere (Jing et al., 2019;
Ochoa-Sánchez et al., 2019; Chia et al., 2020a).

ET is used widely in many fields such
as agronomy, hydrology, climatology, and
environmental science (Miralles et al., 2011;
Xiang et al., 2020). It represents an important
indicator for the management and planning
of water resources, and for such a reason,
its estimation is essential in the study
of hydrological processes. In this sense,
physically-based indirect methods arise from
the difficulty of obtaining field measurements
precisely using several equations to estimate the
evapotranspiration rates from meteorological
data. Such is the case of the FAO-56
Penman-Monteith method (FAO56-PM)
for estimating reference evapotranspiration

(ET0), which is recommended for irrigation
scheduling worldwide because it generally
shows the best results under various climatic
conditions (Nema et al., 2017; Xiang et al.,
2020). Accurate calculations of ET0 are the
prerequisite for obtaining the upper limit
on crop water requirements (potential crop
evapotranspiration) and the fundamental
basis for formulating agricultural irrigation
systems (Lewis and Allen, 2017). However,
the conditions encountered in the field differ
generally from the ”standard conditions”defined
in the FAO-56 Penman-Monteith requirements
(Allen et al., 1998). The effects of soil water
stress reduce the evapotranspiration rates
(non-standard conditions), and its consideration
allows to obtain the actual evapotranspiration,
ETa. Therefore, monitoring the total available
water by computing the daily water balance for
the root zone is needed.

On the other hand, due to advances in
remote sensing technology and methods,
numerous models were developed to obtain
evapotranspiration products with satellite
data that can offer unique spatial-temporal
variations. Remote sensing technology appears
to remove the limitation of spatial coverage
when estimating ET (Chia et al., 2020b).
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Methods based on satellite data include: i)
energy balance methods; ii) methods based
on the relationship between vegetation index
and surface temperature; iii) methods based on
the Penman-Monteith equation; iv) methods
based on the Priestley-Taylor equation; v)
empiric methods and vi) soil water balance
methods (Zhang et al., 2016; Carmona et
al., 2018; Degano et al., 2020). In this sense,
the estimation of ET crucial, especially when
dealing with agricultural regions, such as the
Pampean Region of Argentina (PRA). In fact,
there is a growing development of application
methods to estimate the evapotranspiration in
the PRA (Walker et al., 2018; Carmona et al.,
2018; Degano et al., 2020).

Machine learning techniques are increasingly
being considered for ET estimation at different
scales, including remote sensing data. When
adequate and reliable experimental data are
available, a promising alternative approach
for estimating evapotranspiration rates is
provided by machine learning algorithms,
which are particularly suited to address
non-linear regression problems depending
on many variables (Granata et al., 2020).
Artificial Intelligence (AI) based approaches
have emerged as an alternative solution to
map the relationships between meteorological
parameters and evapotranspiration, even with
limited knowledge of the real interactions
between variables (Chia et al., 2020b). Among
several machine learning models, evolutionary
computing has demonstrated a remarkable
progression in the modelling of ET0. In this
sense, Jing et al. (2019) presented an interesting
review of the implementation of evolutionary
computing models to estimate ET0 employing
meteorological data (2007–2019). There are
few examples of AI methods applying remote
sensing data in comparison with those that
use meteorological data. Yang et al. (2006)
proposed a model predicting continental-scale
evapotranspiration by combining Moderate
Resolution Imaging Spectrometer (MODIS),
AmeriFlux data and support vector machine
technique (RMSE = 0.62 mm d−1, and R2

= 0.75). Lu and Zhuang (2010) developed an
artificial neural networks model to estimate the
daily evapotranspiration (R2 = 0.52 - 0.86),
using remote sensing data from the MODIS,
meteorological data, and eddy covariance flux
data. Chen et al. (2013) developed an artificial
neural network model from AmeriFlux data,
and land surface products derived from remote
sensing data (R2 = 0.77, and RMSE = 0.62
mm d−1). Zhang et al. (2018) explored three
machine learning algorithms (support vector
machine, back-propagation neural network,
and an adaptive neuro-fuzzy inference system)
for estimating ET0 from remote sensing data.
Their results suggest that the land surface
temperature (LST) could be used to accurately
estimate ET0 with high correlation coefficients
(R2 = 0.897 - 0.915) and show that the surface
reflectance data slightly improve the model’s
accuracy.

The National Weather Service (SMN, for
its acronym in Spanish) of Argentina has a
weather stations network that allows estimating
the evapotranspiration and validating related
satellite products. From the information
provided by the SMN and other meteorological
stations, the Agricultural Risk Office (ORA,
for its acronym in Spanish) of Argentina works
to monitor the soil water reserve in grasslands
and cultivation areas. ORA provides the values
of ET0 from meteorological data and ETa

estimations from water balance computation on
the root zone.

In this study, we propose to use CERES
(Clouds and the Earth’s Radiant Energy
System) satellite products data as input
variables and Machine Learning techniques for
estimating evapotranspiration in the PRA. We
train and test several techniques, particularly
linear regression methods, decision trees, among
others, and an artificial neural network for
predicting ET0 and ETa with CERES products
data. Ground data provided by the ORA were
used to train, validate, and test the machine
learning algorithms.
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2. MATERIALS AND METHODS

2.1. Study area and ground data

PRA is an extensive and fertile plain of
approximately 600,000 km2 that encompasses
several Argentine provinces. This region
presents low elevation, and typical regional
topographic gradients (<0.1%). It is
located within the region of subtropical
and mid-latitudes or temperate climates,
characterized by long periods of drought and
floods, which affect the availability of water,
and the productivity of agricultural systems,
among other human activities. According
to Aliaga et al. (2017), the climate in PRA
can be divided into eight climate zones:
Continental (C), Subtropical (ST), Temperate
Highland of Ventania Hills (THVH), Temperate
Oceanic (TO), Temperate Very Humid (TVH),
Warm-Highland of Pampean Hills (WHPH),
Warm-humid (WH), and Semiarid (SA).
ET0 and ETa values calculated by the ORA
were used from this broad region. These
measurements are based on information from
24 sites placed in seven climate zones of the
PRA, as depicted in Fig. 1 and Table 1. Due to
a lack of quality information, the SA zone was
not considered.

2.2. Reference crop evapotranspiration

The ET0 values were estimated by ORA from
the FAO56-Penman-Monteith method (Allen et
al., 1998):

ET0 =
0,408∆(Rn−G) + γ

(
900

Tm+273

)
u2(es − ea)

∆ + γ(1 + 0,34u2)
(1)

where ET0 is the daily reference crop
evapotranspiration in mm d−1, ∆ is the slope
of the saturation vapour pressure-temperature
curve (kPa C−1), Rn is the net radiation (MJ
m2 d−1), G is the soil heat flux (MJ m2 d−1),
is the psychrometric constant (kPa C−1), Ta is
the daily mean air temperature (ºC), u2 is the
mean daily wind speed at 2 m (m s-1), es is the
saturation vapour pressure (kPa), and ea is the
actual vapor pressure (kPa).

Figure 1: Pampean Region of Argentina,
climates zones (in red text and different
weft patterns), and spatial distribution of
the meteorological stations used (yellow
points) (modified from Aliaga et al.
(2017)).

2.3. Actual evapotranspiration

The ETa was calculated by ORA with a soil
water balance method. It consists of assessing
the incoming and outgoing water flux into the
vegetation root zone over some time period. ETa

can be deduced from the change in soil water
storage over time (Eq.2) (Allen et al., 1998;
Degano et al., 2021). The daily water balance
used to calculate soil water storage considers the
following terms:

The ET0 values were estimated by ORA from
the FAO56-Penman-Monteith method (Allen et
al., 1998):

Sf +Exf = Si+Exi+P−RO−DP−ETa (2)
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where Sf and Si are the final and initial
soil water storage, Exf and Exi are the
final and initial excess water accumulated on
the surface, P is the rainfall, RO is the
surface runoff, and DP is the deep percolation.
Subsurface horizontal movements of water have
been neglected, generally of a lower order than
the vertical ones. Soil moisture content can
be at its maximum retention capacity or field
capacity (in which the extraction of water by
the vegetation occurs without any difficulty),
or it can drop to values below the permanent
wilting point, in which the vegetation is it would
wither without resilience even in a saturated
atmosphere. The difference between wilting
point and field capacity is the available water.
The ability of a soil to store water depends on
the amount and size of its pores, that is, on
its structure, texture, and content of organic
matter. When soil moisture is less than field
capacity, the ETa is less than its potential
value. It decreases as the level of water stress
to which the vegetation is subjected increases.
Finally, ETa can be obtained from potential crop
evapotranspiration, and the initial soil storage
is expressed as a fraction of the field capacity
(Degano et al., 2021).

2.4. CERES products

As input variables within machine learning
algorithms, CERES SYN1deg Ed3A satellite
products available at the CERES website
(http://ceres.larc.nasa.gov) were used (Rutan et
al., 2015, NASA/LARC/SD/ASDC, 2017). The
”SYN”(Synoptic Radiative Fluxes and Clouds)
means that this version provides radiation data
on clear and all-sky conditions, the ”1deg”
means it has a 1-degree spatial resolution, and
the ”Ed3A” is the version number (Smith et
al., 2011; Jia et al. 2016). Considering that
the main driving forces on the ET process
are available energy, aerodynamic effects, and
soil water storage (for ETa), we chose as
input variables the CERES products mentioned
in Table 2. The solar radiation (Rs↓) and
incoming longwave radiation (Rl↓) represent
the radiative term that provides the available

energy to the soil-water-plant system. The Tskin

is proportional to the energy output from the
system, increasing when the evaporative fraction
is reduced due to a less water availability in
the soil. The auxiliary data W (as an indicator
of the water available in the atmosphere) and
u10 represent the aerodynamic terms in the
evapotranspiration process, and the atmospheric
pressure (patm) influences the psychrometric
constant. In addition, the theoretical solar
radiation (Rs↓0) indicates the maximum solar
radiation available due to cloud-less conditions.
As the solar radiation varies throughout the
year, it also gives us information about the
time of the year in the study area. Geographic
location also was considered in the machine
learning algorithms.

2.5. Machine learning algorithms

Multilayer Perceptron (MLP), Random
Forest (RF), Support vector machine-based
regressor (SVR), XGBoost regressor (XGBR),
Generalized Linear Models (GLM), and
K-Nearest Neighbor regressor (KNN)
algorithms were selected in order to compare
each performance. These were executed using
the Scikit-learn library in Google Colaboratory
(COLAB). Scikit-learn is a Python module
for machine learning built on top of SciPy
and is distributed under the 3-Clause BSD
license (Pedregosa et al., 2011), and COLAB
is a free online cloud-based Jupyter notebook
environment that allows to train machine
learning and deep learning models.

MLP is an artificial neural network that
optimizes the squared loss using LBFGS or
stochastic gradient descent. It consists of three
types of layers. The input layer receives the
input signal to be processed. The output layer
performs the required task such as prediction
and classification. An arbitrary number of
hidden layers placed between the input and
output layer are the accurate computational
engine of the MLP. As a feed-forward network
in a MLP, the data flow from the input to the
output layer (Kisi, 2007; Kisi, 2008; Landeras et
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Table I: Station city, climate zone, geographic location, and weather characteristics of the sites
used. T: Mean annual air temperature, RH: Relative Humidity, u10: wind speed at 10 m, P:
Rainfall. Climate data from SMN of Argentina (period 1981–2010).

al., 2008; Izadifar and Elshorbagy, 2010; Abbe et
al., 2022). RF regressor is an ensemble method
that combines the predictions from multiple
decision trees on various sub-samples of the
dataset to make a more accurate prediction than
the individual models (Breiman, 2001; Ok et al.,
2012; da Silva Júnior et al., 2019). SVR uses the
same principles as the support vector machine
for classification. The basic idea behind SVR is
to find the best fit line. The best fit line is the
hyperplane with the maximum number of points
(Kisi and Cimen, 2009; Fan et al., 2018; Chia
et al., 2020a; Faramiñán et al., 2021). XGBR

is a decision tree-based ensemble algorithm
that uses a gradient boosting framework. It
works as Newton-Raphson in function space
unlike gradient boosting which works as gradient
descent in function space, a second-order Taylor
approximation is used in the loss function
to make the connection to Newton Raphson
method (Chen and Guestrin, 2016). The
idea behind boosting is to generate multiple
”weak”prediction models sequentially, and each
of these takes the results of the previous
model to generate a ”stronger” model, with
better predictive power and greater stability

6
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Table II: Variables, descriptions, sources, and units of the CERES products used.

in its results (Chen and Guestrin, 2016; Han
et al., 2019; Putatunda and Rama, 2018).
Finally, GLM expands the general linear model.
The dependent variable is linearly related
to the factors and covariates via a specified
link function (Faramiñan et al., 2022). And
KNN makes a prediction based on the local
interpolation of the targeted variable in the
k-nearest neighbours (Yamaç and Todorovic,
2020).

2.6. Methodology

The flowchart in Figure 2 depicts the
methodology used to evaluate the machine
learning models and find the best models. The
first step was to establish a connection with the
databases. Considering the CERES products
data for each exact location of the validation
sites and the ET0 and ETa values provided
by the ORA, we elaborated a data set of 22
columns x 119,729 rows, where each column
represents a variable (response or exploratory)
or a data type, and each row represents a
daily mean value of each variable from 2000 to
the 2013 year. The next step was to prepare
the data as input to the machine learning
regression algorithms. The whole dataset was
pre-processed and split into training, validation,
and testing. The data for the period 2000-2009
(∼70% of whole dataset) was used as training
and validation dataset. A random split 80/20
training/validation on 2000-2009 dataset was

employed to find the best configuration for
each model (MLP, RF, SVR, XGBR, GLM and
KNN algorithms). The remaining data for the
period 2010-2013 (∼30% of whole dataset) was
reserved as testing dataset. The models were
trained using different variables sets of CERES
products as input. After analyzed the accuracy
of each model using the validation dataset, the
testing dataset was then used to evaluated the
performance of the previous models (Results in
Table 3). Finally, the performance of the best
models developed with daily data for both ET0

and ETa, is evaluated in; i) different climate
zones (Results in Table 4), ii) different temporal
scales (averaged 8, 16 and 30 days, Results in
Table 5).

2.7. Performance metrics

Three typical metrics were used in this study to
assess the performance of the retrieved models.
Also, a plot of observations against the predicted
values illustrates how the points match the
1:1 line to evaluate each model’s performance.
The scatter plot allows for a visual inspection
of each model’s performance (performance is
better the closer the values are to the line).
The Root-mean-square error (RMSE) and the
mean absolute error (MAE) were used to
evaluate the models’ errors. The RMSE has
been used as a standard statistical metric to
measure model performances in meteorology,
air quality, and climate research studies. The

7
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Figure 2: Flow chart of ET0 and ETa models. The data processing is shown, where from the
exploratory and response variables the predictive models are obtained.

MAE is another useful measure widely used
in model evaluations. While they have both
been used to assess models’ performance for
many years, there is no consensus on the most
appropriate metric for model errors. While the
MAE gives the same weight to all errors, the
RMSE penalizes variance as it gives errors with
larger absolute values (Chai and Draxler, 2014).
While both statistics were used as made by other

researchers in similar studies (and we consider
both so that the results obtained are easily
comparable with those other studies), RMSE
was selected for comparing the errors between
different algorithms due that RMSE penalizes
larger errors more severely, and usually is better
at revealing models performance differences.
Finally, the coefficient of determination (R2)
was used to show the goodness of fit.
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3. RESULTS AND DISCUSSION

3.1. Evaluation of machine learning
algorithms

In the Experiment (a), where Rs↓, Rl↓, and
Tskin CERES products were considered as input
variables to predict ET0, the MLP model shows
the best results with MAE = 0.556 mm d−1,
RMSE = 0.749 mm d−1, and R2= 0.826 (Figure
3a). In contrast, the RF model shows the worst
results, with MAE = 0.578 mm d−1, RMSE =
0.784 mm d−1, and R2= 0.809 over validation
dataset.

In the second Experiment (b), where W, patm
and u10 CERES products were incorporated
as input variables, the statistical errors (MAE
and RMSE) decreased between 8 and 15%.
Furthermore, an improvement in 3 to 5%
accuracy was evidenced. In this case, the SVR
shows the best results with MAE = 0.505 mm
d−1, RMSE = 0.679 mm d−1, and R2= 0.857.

In the Experiment (c), the theoretical solar
radiation is incorporated as an input variable.
In this case, all the models improved their
performance. Similarly, the SVR also shows the
best results in the validation, with MAE, RMSE
and R2 of 0.478 mm d−1, RMSE = 0.659 mm
d−1, and R2= 0.865, respectively.

Finally, in Experiment (d), all models improve
their performance by including the location
(latitude and longitude) as input variables. The
SVR shows the best statistical results when
comparing the ET0 predicted values with those
calculated using the PM-FAO56 method (MAE
= 0.444 mm d−1, RMSE = 0.609 mm d−1,
and R2= 0.885). Comparing the results of the
Experiments (a) and (d), we observed that
statistical errors decreased from 14 to 29%, and
the accuracy improved from 4 to 8%.

For the prediction of ETa, the machine
learning algorithms were trained similarly to
the ET0 models. The MLP model following
the experiment a) also shows the best results

with MAE = 0.460 mm d−1, RMSE = 0.630
mm d−1, and R2 = 0.560 (Figure 3b). With
more input variables, both RF and SVR were
ranked as the best algorithms in the following
experiments. The SVR machine-learning model
showed statistical values of MAE = 0.400 mm
d−1, RMSE = 0.562 mm d−1, and R2 = 0.650
for the Experiment (d).

It is interesting to note that the performances of
RF, SVR and KNN models improve significantly
as more input variables are incorporated into the
training process. Contrary, the GLM algorithm
only is suitable when the number of variables
is low (Experiment (a)). Concerning actual
evapotranspiration, the GLM model improves
its statistical errors by ∼5%, while, for example,
RF improves by up to 20% by adding more
input variables. Table 3 presents a statistical
summary of the results obtained in the four
experiments with the six machine learning
algorithms over the validation dataset, while
Figure 3 show a ranking of the models
considering the accuracy for each experiment.

Fig. 4 shows the comparisons between ET0

predicted values with machine learning
algorithms (Experiment (d)) and those
values obtained using the PM-FAO56 method.
Similarly, Fig. 5 shows the comparisons between
ETa predicted and those obtained by soil water
balance. From Figures 4 and 5, it is possible
to observe that all models developed tend to
underestimate both the reference and actual
evapotranspiration for higher ET values (ET0

> 6 mm d−1, and ETa > 3 mm d−1). However,
this characteristic is more evident in the
GLM model. The SVR, RF and MLP models
generally show better performance, and we
found that these have a more remarkable ability
to predict evapotranspiration with CERES
data.

3.2. Final testing and complementary
analysis

After training and validating the algorithms
with the daily data set between 2000 and

9
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Table III: Performance comparison of the machine learning algorithms over validation dataset.
Experiments (a) – (d), where the input variables used are shown. SD: Standard deviation.

2009, we observed that SVR model show
the best results, and RF and MLP models
have almost similar performances. Therefore,
as a complementary analysis, we take the
best developed model (SVR for both reference
and actual evapotranspiration) to analyze the
statistics errors using the independent testing
dataset (2010-2013) into different data subsets
considering the different climate zones. Table 4
shows the results obtained.

In Carmona et al. (2018), Priestley-Taylor (PT)
and PM FAO56 equations were adapted to
predict the reference evapotranspiration with
CERES data. Its results were between 0.6 -
0.8 mm d−1, 0.8-1.1 mm d−1, and 0.769-0.783
for MAE, RMSE, and R2, respectively.
In this novel study, statistical errors were
significantly improved when using machine
learning algorithms. We observed that the
ML algorithms are better coupled to local
conditions than classical models. For predicting

10
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Table IV: Performance of the best-trained machine learning algorithms (for both reference and
actual evapotranspiration) in the different climate zones considering the Test dataset. N: number
of daily values, n: number of validation sites in each climate zone.

the reference evapotranspiration, we observed
mean statistical errors over the Test data set
of 0.437 mm d−1, 0.616 mm d−1, and 0.893
for the MAE, RMSE, and R2, respectively.
Deviations of MAE and RMSE values of ∼20%
were observed for the different climate zones.
The best results were obtained in the TO zone.

TO zone is the wettest zone, the second
windiest, and where wet and dry events of low
intensity and long duration are common (Aliaga
et al., 2017). This good performance can be
explained because the ET is closer to potential
rates in the TO zone, with Tskin (used as input
variable) close to air temperature (required in
ET0). On the other hand, the climate zones of
the western of the PRA (C and WHPH) showed
higher statistics errors.

In predicting ETa, we observed mean statistical
errors over the Test data set of 0.422 mm
d−1, 0.599 mm d−1, and 0.614 for the MAE,
RMSE, and R2, respectively. Also, the best
results were obtained in the TO zone. However,
worse statistics values were observed in TVH
zone (centre location of the PRA). Bohn et
al. (2020) observed that this zone has different
hydrogeological characteristics related to the

errors indicated in our work. We suggest that
the water table can generate effects on the
difference in evapotranspiration (mainly recent
evapotranspiration) according to the climatic
cycle, which would affect the process, increasing
the error and the difference between the errors
of ET0 and ETa.

It is helpful to contrast our results concerning
other backgrounds regarding the estimation
of ET by satellite data in the PRA. For
example, Rivas and Caselles (2004) proposed
and evaluated a simplified equation to estimate
spatial reference evapotranspiration from
remote sensing-based surface temperature. Its
results were analyzed using 58 NOAA-AVHRR
images of the TO zone and showed errors
of 0.60 mm d−1. Rivas and Carmona (2013)
applied a semi-empirical model to estimate
ETa over pasture and soybean using LandSat
satellite images and meteorological observations
in Tandil (TO zone). The observed errors
for pasture and soybean were 0.98 mm d−1

and 1.40 mm d−1. Marini et al. (2017) used
regression analysis between MODIS products
(Land Surface Temperature and Normalized
Difference vegetation Index - NDVI) and
information from meteorological stations for
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Figure 3: Ranking of the algorithms used
in the different experiments ((a) - (d))
considering the RMSE values. a) Ranking
of the machine learning algorithms to
predict ET0, and b) Ranking of the
machine learning algorithms to predict
ETa.

estimating the evapotranspiration in the
southwest of the Buenos Aires Province
(Argentina). Its results showed values of R2

of 0.696 and 0.841 to predict ET0, and ETa,
respectively. More recently, Walker et al. (2018)
presented a formulation to derive the actual
evapotranspiration from in situ and microwave
data. Its model was calibrated with observed
data in the Southern Great Plains – USA
(SGP) area (RMSE = 0.88 mm d−1, and R2 =
0.80) and then was applied in a highly humid
period in the PRA with results near to potential
rates (RMSE = 1.6 mm d−1 comparing the
model with potential evapotranspiration values
of corresponding to three sites of warm and
warm-humid zones).

In addition, to evaluating the models on a
daily scale, it is helpful to show the statistical
errors of the trained models on other commonly
used time scales. We evaluated the statistical
errors of the best model for time averaged data
every 8, 16 and 30 days. This time resolution
also allows us to compare the results obtained
with other models evaluated in the PRA.
Analyzing of 8 and 16 days averaged data are
interesting since they allow the comparison with
ET products from satellite sensors with better
spatial resolution, such as MODIS products
(with spatial resolution between 250 m and 1
km). Table 5 shows the performance metrics at
different temporal scales. We observed that the
RMSE is about 0.30 mm d−1 considering the
mean monthly for the ET0 prediction, while the
RMSE is around 0.44 mm d−1 for ETa.

The ET0 monthly errors obtained in this study
were significantly better than those observed
in Carmona et al. (2018), who reflect values
between 0.37 - 0.53 mm d−1, and 0.47 - 0.64
mm d−1 for MAE, and RMSE, respectively, and
0.916 - 0.936 for R2. On the other hand, Degano
et al. (2019) evaluated the correspondence
between MOD16A2 product (Mu et al., 2013)
and reference evapotranspiration in PRA. Their
results showed a systematic overestimation of
MOD16A2 product, with RMSE = 2.4 mm d−1

and R2 = 0.86. Subsequently, Degano et al.
(2021) corrected the systematic errors of the
MOD16A2 products and then evaluated the
actual evapotranspiration on extensive soybean
crops in the PRA. The statistical errors for
predicting the actual evapotranspiration for 8
days- MODIS products on soybean showed 0.44
mm d−1, 0.58 mm d−1, and 0.85 for MAE,
RMSE, and R2, respectively. The performance
obtained in this work is comparable to those
obtained with more complex and higher spatial
resolution satellite products.

4. CONCLUSIONS

In this study, there were developed and
evaluated different machine learning models to
predict reference and actual evapotranspiration
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Figure 4: ET0 models, Experiment (d): predicted ET0 values versus those obtained with ET0

PM-FAO56 method over Validation dataset.

Table V: Performance of the best-trained machine learning algorithms considering average values
every 8, 16 and 30 days on Test dataset.

using different set of CERES satellite
products as input. Multilayer Perceptron
(MLP), Random Forest (RF), Support vector
machine-based regressor (SVR), XGBoost
regressor (XGBR), Generalized Linear Models
(GLM), and K-neighbors regressor (KNN)
machine learning algorithms were used to
trained the models and then were compared
with ground observations corresponding to

agro-meteorological stations distributed in
seven climate zones of the Pampean Region of
Argentina. The accuracy of the models based
on the considered algorithms using different
CERES datasets was analyzed. In general,
it was observed that the performance of the
models increase as more input variables from
CERES are included. We observed that the
SVR model shows the best performance. The
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Figure 5: ETa models, Experiment (d): predicted ETa values versus those obtained with daily
water balance over Validation dataset.

RF and MLP models present almost similar
performances than SRV although with a slightly
worse accuracy. Then, the best SVR model was
analyzed by mean of statistical metrics over
the study area using an independent dataset
(2010-2013). For the prediction of the reference
evapotranspiration, we observed metrics of
0.437 ± 0.075 mm d−1, 0.616 ± 0.110 mm d−1,
and 0.893 ± 0.025 for the MAE, RMSE, and R2,
respectively. On the other hand, in predicting
actual evapotranspiration, we observed metrics
of 0.422 ± 0.033 mm d−1, 0.599 ± 0.048
mm d−1, and 0.614 ± 0.028 for the MAE,
RMSE, and R2, respectively. Furthermore, the
statistical metrics were analyzed considering
different temporal scales (averaged 8, 16 and 30
days), which allow drawing a baseline to later
develop more robust products by incorporating
reanalysis products such as MERRA2 and
satellite information from MODIS, Landsat

or Sentinel images, among others. Comparing
the results obtained in this work with other
machine learning models to estimate reference
evapotranspiration developed by other authors,
we understand that our results are promising
and represent a baseline for future studies.
The combination of CERES variables with
information from other sources may generate
more specific evapotranspiration products,
considering the different land covers.

Acknowledgements: This work was supported
by the Consejo Nacional de Investigaciones
Cient́ıficas y Técnicas (PROG. COOP.
BILATERAL LEVEL 1 CONICET - NSFC,
2017, Resol.2018-308- APN-CIR#CONICET).
Also, we thank BA. Adriana Basualdo of the
Oficina de Riesgo Agropecuario for providing
the reference evapotranspiration data and the

14



Prediction of evapotranspiration in the Pampean Plain ...

terms of daily water balance for the validation
sites. The CERES data were obtained from the
Atmospheric Science Data Center at NASA
Langley Research Center.

REFERENCES
Abbe, E., Bengio, S., Cornacchia, E., Kleinberg,

J., Lotfi, A., Raghu, M., Zhang, C., 2022.
Learning to Reason with Neural Networks:
Generalization, Unseen Data and Boolean
Measures (No. arXiv:2205.13647). arXiv.
https://doi.org/10.48550/arXiv.2205.13647

Aliaga, V. S., Ferrelli, F., & Piccolo, M. C.,
2017. Regionalization of climate over the
Argentine Pampas. International Journal of
Climatology, 37, 1237–1247.

Allen, R.G., Pereira, L.S., Raes, D., Smith, M.,
1998. Crop evapotranspiration: Guidelines
for computing crop water requirements.
Irrigation and Drainage Paper No 56. Food
and Agriculture Organization of the United
Nations (FAO), Rome, Italy.

Allen, R.G., Pereira, L.S., Howell, T.A.,
Jensen, M.E., 2011. Evapotranspiration
information reporting: I. Factors
governing measurement accuracy. Agric.
Wat. Manag. 98 (6), 899–920. https:
//doi.org/10.1016/j.agwat.2010.12.015.

Bohn V., Rivas R., Varni M., Piccolo C.,
2020. Using SPEI in predicting water
table dynamics in Argentinian plains.
Environmental Earth Sciences 79:469,
doi.org/10.1007/s12665-020-09210-0

Breiman, L., 2001. Random Forests. Mach.
Learn. 45, 5–32. https://doi.org/10.1023/A:
1010933404324

Carmona, F., Holzman, M., Rivas, R., Degano,
M.F., Kruse, E., Bayala, M., 2018.
Evaluation of two models using CERES
data for reference evapotranspiration
estimation. Rev. de Teledet. 51, 87–98.
https://doi.org/10.4995/raet.2018.9259.

Chen, Z., Shi, R., & Zhang, S., 2013.
An artificial neural network approach to
estimate evapotranspiration from remote
sensing and AmeriFlux data. Frontiers of
Earth Science, 7(1), 103–111. https://doi.
org/10.1007/s11707-012-0346-7

Chen, T., Guestrin, C., 2016. Xgboost:
A scalable tree boosting system, in:
Proceedings of the 22nd Acm Sigkdd
International Conference on Knowledge
Discovery and Data Mining. pp. 785–794.

Chia, M. Y., Huang, Y. F., & Koo, C. H.,
2020a. Support vector machine enhanced
empirical reference evapotranspiration
estimation with limited meteorological
parameters. Computers and Electronics
in Agriculture, 175, 105577. https:
//doi.org/10.1016/j.compag.2020.105577

Chai, T. and Draxler, R. R., 2014. Root
mean square error (RMSE) or mean absolute
error (MAE)? – Arguments against avoiding
RMSE in the literature, Geosci. Model
Dev., 7, 1247–1250, https://doi.org/10.5194/
gmd-7-1247-2014.

Chia, M.Y., Huang, Y.F., Koo, C.H., &
Fung, K.F., 2020b. Recent Advances in
Evapotranspiration Estimation Using
Artificial Intelligence Approaches with a
Focus on Hybridization Techniques—A
Review. Agronomy, 10(1), 101. https:
//doi.org/10.3390/agronomy10010101

da Silva Júnior, J.C., Medeiros, V., Garrozi,
C., Montenegro, A., Gonçalves, G.E.,
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imágenes MODIS. Revista de Teledetección,
48, 29-41. https://doi.org/10.4995/raet.2017.
6743

Martens, B., de Jeu, R., Verhoest, N.,

16

https://doi.org/10.1016/j.enconman.2018.02.087
https://doi.org/10.1016/j.enconman.2018.02.087
https://doi.org/10.1016/j.mex.2022.101665
https://doi.org/10.1016/j.mex.2022.101665
https://doi.org/10.1109/RPIC53795.2021.9648425
https://doi.org/10.1109/RPIC53795.2021.9648425
https://doi.org/10.1016/j.scitotenv.2019.135653
https://doi.org/10.1016/j.scitotenv.2019.135653
https://doi.org/10.1155/2019/9575782
https://doi.org/10.1155/2019/9575782
https://doi.org/10.1002/hyp.7771
https://doi.org/10.1002/hyp.7771
https://doi.org/10.3390/rs8020090
https://doi.org/10.3390/rs8020090
https://doi.org/10.1002/hyp.6837
https://doi.org/10.1002/hyp.6837
https://doi.org/10.1016/j.jhydrol.2016.11.055
https://doi.org/10.1016/j.jhydrol.2016.11.055
https://doi.org/10.1016/j.rse.2010.04.001
https://doi.org/10.4995/raet.2017.6743
https://doi.org/10.4995/raet.2017.6743


Prediction of evapotranspiration in the Pampean Plain ...

Schuurmans, H., Kleijer, J., Miralles, D.,
2018. Towards Estimating Land Evaporation
at Field Scales Using GLEAM. Remote
Sensing, 10(11), 1720. https://doi.org/10.
3390/rs10111720

Miralles, D.G., Holmes, T.R.H., De Jeu, R.A.M.,
Gash, J.H., Meesters, A.G.C.A., Dolman,
A.J., 2011. Global land-surface evaporation
estimated from satellite-based observations.
Hydrol. Earth Syst. Sci., 15, 453–469.

Mu, Q.Z., Zhao, M.S., Running, SW,
2013. MODIS Global Terrestrial
Evapotranspiration (ET) Product (NASA
MOD16A2/A3). Algorithm Theoretical
Basis Document. Collection 5. Numerical
Terradynamic Simulation Group. College
of Forestry and Conservation. University of
Montana.

NASA/LARC/SD/ASDC (2017). CERES and
GEO-Enhanced TOA, Within-Atmosphere
and Surface Fluxes, Clouds and Aerosols
Daily Terra-Aqua Edition4A [Data set].
NASA Langley Atmospheric Science
Data Center DAAC. Retrieved from
https://doi.org/10.5067/Terra+Aqua/
CERES/SYN1degDay L3.004A

Nema, M.K., Khare, D., & Chandniha, S.K.,
2017. Application of artificial intelligence
to estimate the reference evapotranspiration
in sub-humid Doon valley. Applied Water
Science, 7(7), 3903–3910. https://doi.org/10.
1007/s13201-017-0543-3

Ochoa-Sánchez A, Crespo P, Carrillo-Rojas G,
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